Skip to main content
Log in

Precision Beta-Spectrum Measurement of RaE with Semiconductor Spectrometers

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Precise knowledge of forbidden transition beta-spectra plays a significant role in both nuclear and particle physics. In this work we present a precision measurement of the beta-spectrum shape for 210Bi (historically RaE) performed with spectrometers based on semiconductor Si(Li) detectors. This first forbidden non-unique transition has the transition form-factor strongly deviated from unity and knowledge of its spectrum would play an important role in low-background physics in presence of 210Pb background. The studies were performed with spectrometers in target-detector and 4\(\pi \). The measured transition form-factor could be approximated as \(H(W) = 1 + ( - 0.436 \pm 0.004)W + (0.0523 \pm 0.0010){{W}^{2}}\) and \(H(W) = 1 + ( - 0.436 \pm 0.008)W + \) \((0.0532 \pm 0.0023){{W}^{2}}\) for the target-detector and 4π spectrometer respectively that is in good agreement between the two experiments as well as with the previous studies. The form-factor parameter precision has been substantially increased with respect to the previous experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. Herczeg, “Beta decay beyond the standard model,” Prog. Part. Nucl. Phys. 46, 413–457 (2001).

    Article  ADS  Google Scholar 

  2. J. S. Nico and W. M. Snow, “Fundamental neutron physics,” Annu. Rev. Nucl. Part. Sci. 55, 27–69 (2005).

    Article  ADS  Google Scholar 

  3. I. Alexeev, S. Bakhlanov, N. Bazlov, E. Chmel, A. Derbin, I. Drachnev, I. Kotina, V. Muratova, N. Pilipenko, D. Semyonov, E. Unzhakov, and V. Yere-min, “Beta-spectrometer with Si-detectors for the study of 144Ce-144Pr decays,” Nucl. Instrum. Methods Phys. Res., Sect. A 890, 64–67 (2018).

    Google Scholar 

  4. N. V. Bazlov., S. Bakhlanov, A. Derbin, I. Drachnev, V. Eremin, Kotina I., I. Kotina, V. Muratova, N. Pilipenko, D. Semyonov, E. Unzhakov, and E. Chmel, “A beta spectrometer based on silicon detectors,” Instrum. Exp. Tech. 61, 323–327 (2018).

    Article  Google Scholar 

  5. J. S. O’Conor, “The beta-ray spectrum of radium E,” Phys. Rev. 52, 303–314 (1937).

    Article  ADS  Google Scholar 

  6. L. H. Martin, A. A. Townsend, and T. H. Laby, “The β-ray spectrum of Ra E,” Proc. R. Soc. London, Ser. A 170, 190–205 (1939).

    Article  ADS  Google Scholar 

  7. G. J. Neary and J. D. Cockcroft, ““The β-ray spectrum of Ra E,” Proc. R. Soc. London, Ser. A 175, 71—87 (1940).

    Article  ADS  Google Scholar 

  8. E. J. Konopinski and G. E. Uhlenbeck, “On the Fermi theory of β-radioactivity. II. The ‘forbidden’ spectra,” Phys. Rev. 60, 308–320 (1941).

    Article  ADS  MATH  Google Scholar 

  9. N. Newby and E. J. Konopinski, “Nuclear states in the RaE β-Decay,” Phys. Rev. 115, 434–444 (1959).

    Article  ADS  Google Scholar 

  10. J. I. Fujita, “Conserved current hypothesis and the beta decay of RaE,” Phys. Rev. 126, 202–210 (1962).

    Article  ADS  Google Scholar 

  11. Y. E. Kim and J. O. Rasmussen, “Energy levels of Bi210 and Po210 and the shell-model residual force,” Nucl. Phys. 47, 184–206 (1963).

    Article  Google Scholar 

  12. R. M. Spector, “Shell model investigation of RaE beta-decay,” Nucl. Phys. 40, 338–346 (1963).

    Article  Google Scholar 

  13. J. Sodemann and A. Winther, “Nuclear matrix elements for the β-decay of Bi210(RaE),” Nucl. Phys. 69, 369–383 (1965).

    Article  Google Scholar 

  14. J. Damgaard, R. Broglia, and C. Riedel, “First-forbidden β-decays in the lead region,” Nucl. Phys. A 135, 310–324 (1969).

    Article  ADS  Google Scholar 

  15. S. Fayans and V. Khodel, “Calculations of nuclear matrix elements for beta decay of RaE,” Phys. Lett. B 31, 99–102 (1970).

    Article  ADS  Google Scholar 

  16. M. Morita, M. Yamada, J. I. Fujita, A. Fujii, H. Ohtsubo, R. Morita, K. Ikeda, Y. Yokoo, M. Hiro-Oka, and K. Takahashi, “Nuclear structure studied from weak and related processes,” Prog. Theor. Phys. Suppl. 48, 41–100 (1971).

    Article  ADS  Google Scholar 

  17. K. Ebert, W. Wild, and F. Krmpotić, “A nuclear structure study of the β-Decay of 210Bi(RaE),” Phys. Lett. B 58, 132–134 (1975).

    Article  ADS  Google Scholar 

  18. H. Behrens and L. Szybisz, “On the β-decay 210Bi(RaE) → 210Po(RaF),” Nucl. Phys. A 223, 268–284 (1974).

    Article  ADS  Google Scholar 

  19. A. Carles and A. Malonda, “Precision measurement of the RaE shape factor,” Nucl. Phys. A 596, 83–90 (1996).

    Article  ADS  Google Scholar 

  20. E. A. Plassmann and L. M. Langer, “Beta spectrum of Radium E,” Phys. Rev. 96, 1593–1598 (1954).

    Article  ADS  Google Scholar 

  21. H. Daniel, “Das β-spektrum des RaE,” Nucl. Phys. 31, 293–307 (1962).

    Article  Google Scholar 

  22. D. Flothmann, W. Wiesner, et al., “β-Spektroskopie mit Halbleiterdetektoren beim Zerfall von 32P, 49Sc, 204Tl und 210Bi,” Z. Physik 225, 164–194 (1969).

    Article  ADS  Google Scholar 

  23. M. Agostini et al. (Borexino Collab.), “Simultaneous precision spectroscopy of pp, 7Be, and pep solar neutrinos with Borexino Phase-II,” Phys. Rev. D 100, 082004 (2019).

    Article  ADS  Google Scholar 

  24. K. E. Bergkvist, “A high-luminosity, high-resolution study of the endpoint behaviour of the tritium β-spectrum (I). Basic experimental procedure and analysis with regard to neutrino mass and neutrino degeneracy,” Nucl. Phys. B 39, 317–370 (1972).

    Article  ADS  Google Scholar 

  25. E. Tretyakov, Bull. Russ. Acad. Sci.: Phys. 39, 583—587 (1975).

    Google Scholar 

  26. V. Lobashev and P. Spivak, “A method for measuring the electron antineutrino rest mass,” Nucl. Instrum. Methods Phys. Res., Sect. A 240, 305–310 (1985).

    Google Scholar 

  27. M. Aker et al. (KATRIN Collab.), “Improved upper limit on the neutrino mass from a direct kinematic method by KATRIN,” Phys. Rev. Lett. 123, 221802 (2019).

    Article  ADS  Google Scholar 

  28. J. J. Simpson, “Evidence of heavy-neutrino emission in beta decay,” Phys. Rev. Lett. 54, 1891—1893 (1985).

    Article  ADS  Google Scholar 

  29. A. V. Derbin, A. I. Egorov, et al., “Search for 17-keV neutrinos in 63Ni beta decay,” JETP Lett. 58, 1–4 (1993).

    ADS  Google Scholar 

  30. A. V. Derbin, A. I. Egorov, et al., “Measurement of the 45Ca β spectrum in search of deviations from the theoretical shape,” JETP Lett. 66, 88–92 (1997).

    Article  ADS  Google Scholar 

  31. N. V. Bazlov, A. V. Derbin, I. S. Drachnev, G. E. Gicharevich, I. M. Kotina, O. I. Konkov, N. V. Pilipenko, E. A. Chmel, S. N. Abolmasov, E. I. Terukov, and E. V. Unzhakov. “Si(Li) detector with ultra-thin entrance window on the diffusive lithium side,” J. Phys.: Conf. Ser. 1400, 055056 (2019).

    Google Scholar 

  32. C. M. Lederer and V. S. Shirley, Table of Isotopes, 7th ed. (Wiley, New York, 1978).

    Google Scholar 

  33. S. Y. F. Chu, L. P. Ekström, and R. B. Firestone, The Lund/LBNL Nuclear Data Search, version 2.0 (BNL (Berkeley, US) and Department of Physics, Lund University (Sweden), February 1999).

  34. E. Fermi, “An attempt of a theory of beta radiation,” Z. Phys. 88, 161—177 (1934).

    ADS  Google Scholar 

  35. B. Dzhelepov and L. Zyrianova, The Influence of the Atomic Electron Field on the Beta Decay (Izd. Akad. Nauk SSSR, Moscow, 1956) [in Russian].

    Google Scholar 

  36. P. Huber, “Determination of antineutrino spectra from nuclear reactors,” Phys. Rev. C 84, 024617 (2011).

    Article  ADS  Google Scholar 

  37. L. Hayen, N. Severijns, K. Bodek, D. Rozpedzik, and X. Mougeot, “High precision analytical description of the allowed β-Spectrum shape,” Rev. Mod. Phys. 90, 015008 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Agostinelli et al. (GEANT4 Collab.), “GEANT4: A simulation toolkit,” Nucl. Instrum. Meth. Phys. Res., Sect. A 506, 250–303 (2003).

    Google Scholar 

  39. T. Basaglia, M. C. Han, G. Hoff, C. H. Kim, S. H. Kim, M. G. Pia, and P. Saracco, “Quantitative test of the evolution of Geant4 electron backscattering simulation,” IEEE Trans. Nucl. Sci. 63, 2849–2865 (2016).

    Article  ADS  Google Scholar 

  40. P. Dondero, A. Mantero, V. Ivanchencko, S. Lotti, T. Mineo, and V. Fioretti, “Electron backscattering simulation in Geant4,” Nucl. Instrum. Methods Phys. Res., Sect. B 425, 18–25 (2018).

    Google Scholar 

  41. W. Buhring, “The screening correction to the Fermi function of nuclear β-decay and its model dependence,” Nucl. Phys. A 430, 1–20 (1984).

    Article  ADS  Google Scholar 

  42. D. Wilkinson, “Evaluation of beta-decay: II. Finite mass and size effects,” Nucl. Instrum. Methods Phys. Res., Sect. A 290, 509–515 (1990).

    Google Scholar 

  43. A. Sirlin, “General properties of the electromagnetic corrections to the beta decay of a physical nucleon,” Phys. Rev. 164, 1767–1775 (1967).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (projects nos. 19-02-00097 and 20-02-00571).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Drachnev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derbin, A.V., Lomskaya, I.S., Muratova, V.N. et al. Precision Beta-Spectrum Measurement of RaE with Semiconductor Spectrometers. Phys. Part. Nuclei 53, 497–504 (2022). https://doi.org/10.1134/S1063779622020277

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020277

Navigation