Skip to main content
Log in

The Gauge-Independent Treatment of the Alpha–Alpha Bremsstrahlung

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We study the alpha-alpha bremsstrahlung using a generalization of the Siegert theorem. The corresponding transition amplitude is expressed through the electric and magnetic field strengths and matrix elements of the generalized electric and magnetic dipole moments of the system. Therefore, the amplitude has a manifestly gauge-independent form. Special attention is paid to taking into account the interplay between the Coulomb repulsion and strong interaction of colliding alpha particles. The bremsstrahlung cross sections obtained are compared to available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. “Über die invariante Form der Wellen- und der Bewegungsgleichungen für einen geladenen Massenpunkt,” Z. Phys. 39, 226–232 (1926)

  2. H. Weyl, Theory of Groups and Quantum Mechanics (Dover, New York, 1931).

    MATH  Google Scholar 

  3. A. J. F. Siegert, “Note on the interaction between nuclei and electromagnetic radiation,” Phys. Rev. 52, 787–789 (1937).

    Article  ADS  Google Scholar 

  4. A. V. Shebeko, “A generalization of Siegert‘s theorem and separation of center-of-mass motion,” Sov. J. Nucl. Phys. 49, 30 (1989).

    Google Scholar 

  5. L. Levchuk and A. Shebeko, “On a generalization of Siegert‘s theorem. A corrected result,” Phys. At. Nucl. 56, 227 (1993).

    Google Scholar 

  6. J. L. Friar and S. Fallieros, “Extended Siegert theorem,” Phys. Rev. C 29, 1645–1655 (1984).

    Article  ADS  Google Scholar 

  7. D. Baye and P. Descouvemont, “Microscopic description of nucleus-nucleus bremsstrahlung,” Nucl. Phys. A 443, 302–320 (1985).

    Article  ADS  Google Scholar 

  8. K. Langanke, “Potential model study of \(\alpha {\kern 1pt} - {\kern 1pt} \alpha \) bremsstrahlung,” Phys. Lett. B 174, 27–31 (1986).

    Article  ADS  Google Scholar 

  9. J. Dohet-Eraly and D. Baye, “Comparison of potential models of nucleus-nucleus bremsstrahlung,” Phys. Rev. C 90, 034611 (2014).

    Article  ADS  Google Scholar 

  10. D. Baye, C. Sauwens, P. Descouvemont, and S. Keller, “Accurate treatment of Coulomb contribution in nucleus-nucleus bremsstrahlung,” Nucl. Phys. A 529, 467–484 (1991).

    Article  ADS  Google Scholar 

  11. A. Shebeko, “Towards gauge-independent treatment of radiative capture in nuclear reactions: Applications to low-energy cluster-cluster collisions,” Phys. At. Nucl. 77, 518–527 (2014).

    Article  Google Scholar 

  12. L. Levchuk, L. Canton, and A. Shebeko, “Nuclear effects in positive pion electroproduction on the deuteron near threshold,” Eur. Phys. J. A 21, 29–36 (2004); arXiv: 0311004 [nucl-th].

  13. A. V. Shebeko, P. A. Grigorov, and V. S. Iurasov, “Translationally invariant calculations of form factors, nucleon densities and momentum distributions for finite nuclei with short-range correlations included,” Eur. Phys. J. A 48, 153–173 (2012).

    Article  ADS  Google Scholar 

  14. A. Shebeko and P. Papakonstantinou, in Understanding Density Matrices, Ed. N. V. Danielsen (Nova Science Publ., Hauppauge, NY, 2019), Chap. 2.

    Google Scholar 

  15. C. Elster, L. C. Liu, and R. M. Thaler, “A practical calculational method for treating Coulomb scattering in momentum space,” Nucl. Phys. A 19, 2123 (1993).

    Google Scholar 

  16. A. Arslanaliev and A. Shebeko, “An accurate allowance for initial and final state interactions in the treatment of the alpha-alpha bremsstrahlung,” Phys. Proc. 3, 042.1–042.7 (2019).

  17. A. Nordsieck, “Reduction of an integral in the theory of bremsstrahlung,” Phys. Rev. 93, 785 (1954).

    Article  ADS  MathSciNet  Google Scholar 

  18. M. S. Gravielle and J. E. Miraglia, “Some Nordsieck integrals of interest in radiation and atomic collision theories,” Comp. Phys. Comm. 69, 53–58 (1992).

    Article  ADS  Google Scholar 

  19. G. E. Brown and A. D. Jackson, Nucleon–Nucleon Interaction (North-Holland Publ., Amsterdam, 1976).

    Book  Google Scholar 

  20. C. M. Vincent and H. T. Fortune, “New method for distorted-wave analysis of stripping to unbound states,” Phys. Rev. C 2, 782 (1970).

    Article  ADS  Google Scholar 

  21. B. Frois et al., “Bremsstrahlung in the \(\alpha {\kern 1pt} - {\kern 1pt} \alpha \) and \(^{3}{\text{He}}{\kern 1pt} - {\kern 1pt} \alpha \) interactions,” Phys. Rev. C 8, 2132 (1973).

    Article  ADS  Google Scholar 

  22. U. Peyer et al., “Bremsstrahlung in \(\alpha {\kern 1pt} - {\kern 1pt} \alpha \) scattering,” Phys. Lett. B 41, 151–152 (1972).

    Article  ADS  Google Scholar 

  23. B. Buck et al., “Local potential models for the scattering of complex nuclei,” Nucl. Phys. A 275, 246–268 (1977).

    Article  ADS  Google Scholar 

  24. S. Ali and A. R. Bodmer, “Phenomenological \(\alpha {\kern 1pt} - {\kern 1pt} \alpha \) potentials,” Nucl. Phys. 80, 99–112 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Arslanaliev or A. V. Shebeko.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslanaliev, A.M., Shebeko, A.V. The Gauge-Independent Treatment of the Alpha–Alpha Bremsstrahlung. Phys. Part. Nuclei 53, 79–86 (2022). https://doi.org/10.1134/S1063779622020137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020137

Navigation