Skip to main content
Log in

Tests of Fundamental Discrete Symmetries at the NICA Facility: Addendum to the Spin Physics Programme

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We present new ideas on tests of fundamental symmetries in polarization experiments at the NICA facility. Specifically, we explore the possibilities of high precision tests of the Standard Model by parity violation and searches of Beyond the Standard Model semistrong breaking of time reversal invariance in double polarized proton-deuteron scattering, taking advantage of high intensity beams of polarized protons and deuterons available at NICA. In both cases, we propose to use the new technique of polarized beam with precessing horizontal polarizations, and polarized deuterons are the favored choice. An external target in the extracted beam is optional for the parity violation experiment, which requires furnishing Nuclotron and/or new Booster with very modest new instrumentation. One should not overlook this potential for substantial broadening of the spin physics horizon at the NICA facility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. D. Kekelidze et al., in Proc. of 3rd LUC Physics Conf. 2015 (2016), p. 565.

  2. I. A. Savin et al., EPJ Web Conf. 85, 02039 (2015).

  3. S. Kistryn et al., Phys. Rev. Lett. 58, 1616 (1987).

    Article  ADS  Google Scholar 

  4. N. A. Lockyer et al., Phys. Rev. D 30, 860 (1984).

    Article  ADS  Google Scholar 

  5. S. Gardner, W. C. Haxton, and B. Holstein, Annu. Rev. Nucl. Part. Sci. 67, 69 (2017).

    Article  ADS  Google Scholar 

  6. D. P. Grosnick et al., Phys. Rev. D 55, 1159 (1997).

    Article  ADS  Google Scholar 

  7. I. A. Koop, A. I. Milstein, N. N. Nikolaev, A. S. Popov, S. G. Salnikov, P. Yu. Shatunov, and Yu. M. Shatunov, PEPAN Lett. 17, 154 (2020).

    Google Scholar 

  8. A. I. Milstein, N. N. Nikolaev, S. G. Salnikov, JETP Lett. 111, 197 (2020).

    Article  ADS  Google Scholar 

  9. A. I. Mil’stein, N. N. Nikolaev, and S. G. Sal’nikov, JETP Lett. 112, 352 (2020).

    Article  ADS  Google Scholar 

  10. I. B. Vasserman et al., Phys. Lett. B 187, 172 (1987).

    Article  ADS  Google Scholar 

  11. I. M. Sitnik et al., PEPAN Lett. 2, 22 (2002).

    Google Scholar 

  12. Z. Bagdasarian et al., Phys. Rev. ST Accel. Beams 17, 052803 (2014).

    Article  ADS  Google Scholar 

  13. D. Eversmann et al., Phys. Rev. Lett. 115, 094801 (2015).

    Article  ADS  Google Scholar 

  14. G. Guidoboni et al., Phys. Rev. Lett. 117, 054801 (2016).

    Article  ADS  Google Scholar 

  15. G. G. Guidoboni et al., Phys. Rev. Accel. Beams 21, 024201 (2018).

    Article  ADS  Google Scholar 

  16. N. Hempelmann et al., Phys. Rev. Lett. 119, 014801 (2017).

    Article  ADS  Google Scholar 

  17. V. Fimushkin et al., EPJ, Spec. Top. 162, 275–280 (2008).

    Article  Google Scholar 

  18. S. Vokal et al., PEPAN Lett., 6, 48–58 (2009).

    Google Scholar 

  19. P. Lenisa et al., EPJ Tech. Instrum. 6 (1–2) (2019).

  20. N. N. Nikolaev, F. Rathmann, A. J. Silenko, and Y. Uzikov, “New approach to search for parity-even and parity-odd time-reversal violation beyond the Standard Model in a storage ring,” arXiv:2004.09943 [nucl-th] (2020).

  21. L. B. Okun, Yad. Fiz. 1, 938 (1965).

    Google Scholar 

  22. J. Prentki and M. J. G. Veltman, Phys. Lett. 15, 88 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  23. T. D. Lee and L. Wolfenstein, Phys. Rev. 138, B 1490 (1965).

  24. A. Riotto and M. Trodden, Annu. Rev. Nucl. Part. Sci. 49, 35 (1999).

    Article  ADS  Google Scholar 

  25. I. A. Koop and M. Shatunov, “The spin precession tune spread in the storage ring,” in Proceedings of the 1st EPAC Conference (1988), pp. 738–740.

  26. R. J. Glauber, Phys. Rev. 100, 242 (1955).

    Article  ADS  Google Scholar 

  27. V. Franco and R. J. Glauber, Phys. Rev. 142, 1195 (1966).

    Article  ADS  Google Scholar 

  28. Y. N. Filatov, A. M. Kondratenko, M. A. Kondratenko, Y. S. Derbenev, and V. S. Morozov, Phys. Rev. Lett. 124, 194801 (2020).

    Article  ADS  Google Scholar 

  29. Y. N. Filatov, A. M. Kondratenko, M. A. Kondratenko, Y. S. Derbenev, V. S. Morozov, and A. D. Kovalenko, Eur. Phys. J. C 80, 778 (2020).

    Article  ADS  Google Scholar 

  30. H. Huang, F. Méot, V. Ptitsyn, V. Ranjbar, and T. Roser, Phys. Rev. Accel. Beams 23, 021001 (2020).

    Article  ADS  Google Scholar 

  31. C. Montag, PoS SPIN 2018, 158 (2019).

    Google Scholar 

Download references

Funding

We acknowledge the support of the reported work by the Russian Fund for Basic Research, grant no. 18-02-40092 MEGA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Koop, A. I. Milstein or N. N. Nikolaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koop, I.A., Milstein, A.I., Nikolaev, N.N. et al. Tests of Fundamental Discrete Symmetries at the NICA Facility: Addendum to the Spin Physics Programme. Phys. Part. Nuclei 52, 549–554 (2021). https://doi.org/10.1134/S1063779621040365

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779621040365

Navigation