Skip to main content
Log in

Multiscale Gauge Invariance

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The principle of symmetry with respect to local gauge transformations \(\psi (x) \to {{e}^{{\imath w(x)}}}\psi (x)\) has been extended to fields \(\psi (g) \equiv \left\langle {\chi \left| {\Omega {\kern 1pt} *{\kern 1pt} (g)} \right|\psi } \right\rangle \) defined on a locally compact Lie group \(g \in G\), where \(\Omega (g)\) is a square-integrable representation of \(G\). It has been shown that if \(G\) is an affine group \(G:x{\kern 1pt} ' = ax + b,x,b \in {{\mathbb{R}}^{d}}\), one can construct a quantum field model with a gauge group \(SU(N)\) that is free of both UV and IR divergences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Dyson, Advanced Quantum Mechanics (World Scientific, Singapore, 2007).

    Book  Google Scholar 

  2. E. C. G. Stueckelberg and A. Petermann, “La normalisation des constantes dans la théorie des quanta,” Helv. Phys. Acta 26, 499–520 (1953).

    MathSciNet  MATH  Google Scholar 

  3. N. N. Bogoljubov and D. V. Shirkov, “Charge renormalization group in quantum field theory,” Nuovo Cimento 3, 845–863 (1956).

    Article  MathSciNet  Google Scholar 

  4. G. ’t Hooft and M. Veltman, “Regularization and renormalization of gauge theories,” Nucl. Phys. B. 44, 189–213 (1972).

    Article  ADS  Google Scholar 

  5. M. V. Altaisky, “Quantum field theory without divergences,” Phys. Rev. D 81, 125003 (2010).

    Article  ADS  Google Scholar 

  6. M. V. Altaisky, “Wavelet based regularization for Euclidean field theory,” IOP Conf. Ser. 173, 893–897 (2003).

  7. M. V. Altaisky, “Unifying renormalization group and the continuous wavelet transform,” Phys. Rev. D 93, 105043 (2016).

    Article  ADS  Google Scholar 

  8. M. V. Altaisky and N. E. Kaputkina, “Continuous wavelet transform in quantum field theory,” Phys. Rev. D 88, 025015 (2013).

    Article  ADS  Google Scholar 

  9. A. A. Slavnov and L. D. Faddeev, Gauge Fields. Introduction to Quantum Theory, 2nd Edition (Addison-Wesley, Boston, 1991).

    MATH  Google Scholar 

  10. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992).

    Book  Google Scholar 

  11. C. R. Handy and R. Murenzi, “Continuous wavelet transform analysis of one-dimensional quantum bound states from first principles,” Phys. Rev. A 54 3754–3763 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Albeverio and M. V. Altaisky, “Gauge invariance in wavelet-based quantum field theory,” New Adv. Phys. 5, 1–8 (2011).

    Google Scholar 

  13. A. L. Carey, “Square-integrable representations of non-unimodular groups,” Bull. Aust. Math. Soc. 15, 1–12 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Duflo and C. C. Moore, “On regular representations of nonunimodular locally compact group,” J. Funct. Anal. 21, 209–243 (1976).

    Article  MathSciNet  Google Scholar 

  15. P. Ramond, Field Theory: A Modern Primer (Addison-Wesley, Reading, Mass., 1989).

    MATH  Google Scholar 

  16. A. I. Davydychev, P. Osland, and O. V. Tarasov, “Three-gluon vertex in arbitrary gauge and dimension,” Phys. Rev. D 54, 4087–4113 (1996).

    Article  ADS  Google Scholar 

  17. D. V. Shirkov and I. L. Solovtsov, “Ten years of the analytic perturbation theory in QCD,” Theor. Math. Phys. 150, 132–152 (2007).

    Article  Google Scholar 

  18. A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, “Higher order QCD perturbation theory in different schemes: From FOPT to CIPT to FAPT,” J. High Energy Phys. 1006, 085 (2010).

  19. P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, “Five-loop running of the QCD coupling constant,” Phys. Rev. Lett. 118, 082002 (2017).

    Article  ADS  Google Scholar 

  20. M. V. Altaisky, Wavelet regularization of gauge theories, Phys. Rev. D 101, 105004 (2020).

Download references

ACKNOWLEDGMENTS

The author is grateful to A.V. Bednyakov, S.V. Mikhailov, and O.V. Tarasov for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Altaisky.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altaisky, M.V. Multiscale Gauge Invariance. Phys. Part. Nuclei 51, 521–525 (2020). https://doi.org/10.1134/S1063779620040061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779620040061

Navigation