Skip to main content
Log in

CeSOX: Short-Distance Neutrino Oscillations with BoreXino

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Several experimental anomalies in neutrino physics may point to the possible existence of one or more additional neutrino species that do not interact weakly, the so-called sterile neutrinos. The third phase of the Borexino experiment (SOX) is devoted to verification of this hypothesis. Within the first stage (CeSOX) the count rate of antineutrino events in the liquid scintillation detector from the artificial source 144Ce–144Pr placed in the special pit beneath the setup will be measured. The smaller antineutrino flux, as compared to the original one, would indicate the presence of oscillations into sterile states. This paper gives a survey of the CeSOX experiment, including the general description, the characterization of the radioactive source and the specific features of its use, the description of the method for data analysis, and the expected results. Depending on the significance of the obtained scientific information, the decision on carrying out the second stage of the SOX experiment with the 51Cr source of electron neutrinos will be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. S. Gorbunov, “Sterile neutrinos and their role in particle physics and cosmology,” Phys. Usp. 57, 503 (2014).

    Article  ADS  Google Scholar 

  2. C. Athanassopoulos et al. (LSND Collab.), “Candidate events in a search for oscillations,” Phys. Rev. Lett. 75, 2650 (1995).

    Article  ADS  Google Scholar 

  3. C. Athanassopoulos et al. (LSND Collab.), “Evidence for neutrino oscillations from muon decay at rest,” Phys. Rev. C 54, 2685 (1996).

    Article  ADS  Google Scholar 

  4. C. Athanassopoulos et al. (LSND Collab.), “Evidence for oscillations from the LSND experiment at the Los Alamos Meson Physics Facility,” Phys. Rev. Lett. 77, 3082 (1996).

    Article  ADS  Google Scholar 

  5. A. Aguilar et al. (LSND Collab.), “Evidence for neutrino oscillations from the observation of appearance in a beam,” Phys. Rev. D 64, 112007 (2001); arXiv:hep-ex/0104049v3.

    Article  ADS  Google Scholar 

  6. C. Patrignani et al. (Particle Data Group), “Review of particle physics,” Chin. Phys. C 40, 100001 (2016); http://pdg.lbl.gov/.

  7. B. Armbruster et al. (KARMEN Collab.), “Upper limits for neutrino oscillations from muon decay at rest,” Phys. Rev. D 65, 112001 (2002); arXiv:hep-ex/0203021v1.

    Article  ADS  Google Scholar 

  8. A. A. Aguilar-Arevalo et al. (MiniBooNE Collab.), “Unexplained excess of electron like events from a 1‑GeV neutrino beam,” Phys. Rev. Lett. 102, 101802 (2009); arXiv:0812.2243v2.

    Article  ADS  Google Scholar 

  9. A. A. Aguilar-Arevalo et al. (MiniBooNE Collab.), “Improved search for oscillations in the MiniBooNE Experiment,” Phys. Rev. Lett. 110, 161801 (2013); arXiv:1303.2588v2.

    Article  ADS  Google Scholar 

  10. J. N. Abdurashitov et al. (SAGE Collab.), “Measurement of the response of a Ga solar neutrino experiment to neutrinos from a 37Ar source,” Phys. Rev. C 73, 045805 (2006); arXiv:nucl-ex/0512041v1.

    Article  ADS  Google Scholar 

  11. J. N. Abdurashitov et al. (SAGE Collab.), “Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002-2007 data-taking period,” Phys. Rev. C 80, 015807 (2009); arXiv:0901.2200v3.

    Article  ADS  Google Scholar 

  12. M. Laveder, “Unbound neutrino roadmaps,” Nucl. Phys. Proc. Suppl. 168, 344 (2007); https://www.sciencedirect.com/science/article/pii/S0920563207001752.

    Article  ADS  Google Scholar 

  13. C. Giunti and M. Laveder, “Short-baseline active-sterile neutrino oscillations?” Mod. Phys. Lett. A 22, 2499 (2007).

    Article  ADS  MATH  Google Scholar 

  14. M. A. Acero, C. Giunti, and M. Laveder, “Limits on and disappearance from gallium and reactor experiments,” Phys. Rev. D 78, 073009(2008); arXiv:0711.4222v3.

    Article  ADS  Google Scholar 

  15. C. Giunti and M. Laveder, “Statistical significance of the gallium anomaly,” Phys. Rev. C 83, 065504 (2011); arXiv:1006.3244v3.

    Article  ADS  Google Scholar 

  16. C. Giunti, “Status of the sterile neutrino(s),” Report on 10th Anniversary of Borexino on Recent Developments in Neutrino Physics and Astrophysics, Assergi and L’Aquila, Italy, Sept. 4–7, 2017; https://goo.gl/C1QJCY.

  17. G. Mention, M. Fechner, Th. Lasserre, Th. A. Mueller, D. Lhuillier, M. Cribier, and A. Letourneau, “Reactor antineutrino anomaly,” Phys. Rev. D 83, 073006 (2011); arXiv:1101.2755v4.

    Article  ADS  Google Scholar 

  18. Th. A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, T. Lasserre, J. Martino, G. Mention, A. Porta, and F. Yermia, “Improved predictions of reactor antineutrino spectra,” Phys. Rev. C 83, 054615 (2011); arXiv:1101.2663v3.

    Article  ADS  Google Scholar 

  19. P. Huber, “Determination of antineutrino spectra from nuclear reactors,” Phys. Rev. C 84, 024617 (2011);

    Article  ADS  Google Scholar 

  20. Phys. Rev. C 85, 029901(E) (2012).

  21. F. P. An et al. (Daya Bay Collab.), “Evolution of the reactor antineutrino flux and spectrum at Daya Bay,” Phys. Rev. Lett. 118, 251801 (2017); arXiv:1704.01082v2.

  22. K. N. Abazajian (Int. Neutrino Commun.), “Light sterile neutrinos: a white paper,” arXiv:1204.5379v1 (2012).

  23. G. Alimonti et al. (Borexino Collab.), “The Borexino detector at the Laboratori Nazionali del Gran Sasso,” Nucl. Instrum. Methods Phys. Res., Sect. A 600, 568 (2009); arXiv:0806.2400v1.

  24. M. Cribier, M. Fechner, T. Lasserre, A. Letourneau, D. Lhuillier, G. Mention, D. Franco, V. Kornoukhov, and S. Schönert, “Proposed search for a fourth neutrino with a PBq antineutrino source,” Phys. Rev. Lett. 107, 201801 (2011); arXiv:1107.2335v2.

    Article  ADS  Google Scholar 

  25. G. Bellini et al. (Borexino Collab.), “SOX: Short distance neutrino Oscillations with BoreXino,” J. High Energy Phys. 2013(8), 38 (2013); arXiv:1304.7721v2.

    Article  Google Scholar 

  26. G. Bellini et al. (Borexino Collab.), “Cosmogenic backgrounds in Borexino at 3800 m water-equivalent depth,” J. Cosmol. Astropart. Phys. 2013(8), 49 (2013); arXiv:1304.7381v2.

    Article  Google Scholar 

  27. M. Agostini et al. (Borexino Collab.), “Spectroscopy of geo-neutrinos from 2056 days of Borexino data,” Phys. Rev. D 92, 0311012015; arXiv:1506.04610v2.

  28. A. S. Gerasimov, V. N. Kornoukhov, I. S. Sal’dikov, and G. V. Tikhomirov, “Production of high specific activity 144Ce for artificial sources of antineutrinos,” At. Energy 116, 54 (2014).

    Article  Google Scholar 

  29. S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, and E. M. Zavanin, “Light sterile neutrinos,” J. Phys. G 43, 033001 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I thank the organizers of the conference for the great opportunity to attend and deliver the report. I am also grateful to my scientific advisor A.S. Chepurnov (NPI MSU) and the colleagues of the Borexino/SOX collaboration.This work was supported by the Russian Foundation for Basic Research, project no. 16-29-13014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Gromov.

Additional information

Translated by E. Baldina

1Talk at the International Session-Conference of SNP PSD RAS В “Physics of Fundamental InteractionsВ” dedicated to 50th anniversary of Baksan Neutrino Observatory, KBSU, Nalchik, June 6–8, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromov, M.B. CeSOX: Short-Distance Neutrino Oscillations with BoreXino. Phys. Part. Nuclei 49, 690–697 (2018). https://doi.org/10.1134/S1063779618040263

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779618040263

Keywords

Navigation