Skip to main content
Log in

The methodology of the search for a correlated signal from a supernova explosion using the data of gravitational wave detectors and neutrino observatories

  • The International Session-Conference of SNP PSD RAS “Physics of Fundamental Interactions”
  • Session 6—Neutrino Physics
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The proposed methodology developed in cooperation of the LIGO, VIRGO, Borexino, LVD, and IceCube collaborations is based on a joint analysis of data from neutrino and gravitational wave detectors which record corresponding radiations, almost undistorted by the interstellar medium and propagating with similar speeds. This approach allows to increase the reliability of observations, detect the so-called Silent supernovae and explore the properties and generation mechanisms of gravitational waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Ott, “The gravitational wave signature of corecollapse supernovae”, Class. Quant. Grav. 26, 063001 (2009).

    Article  ADS  MATH  Google Scholar 

  2. B. P. Abbott et al. (LIGO Scientific Collab. and Virgo Collab.), “Observation of gravitational waves from a binary black hole merger”, Phys. Rev. Lett. 116(6), 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  3. N. Y. Agafonova et al. (LVD Collab.), “Implication for the core collapse supernova rate from 21 years of data of the Large Volume Detector”, Ap. J. 802(1), 47 (2015); arXiv:1411.1709v2.

    Article  ADS  Google Scholar 

  4. B. P. Abbott et al. (LIGO Scientific Collab. and Virgo Collab.), “Prospects for observing and localizing gravitational- wave transients with Advanced LIGO and Advanced Virgo”, Living Reviews in Relativity, 19, 1 (2016); arXiv:1304.0670v3.

    Article  ADS  Google Scholar 

  5. J. Aasi et al. (LIGO Scientific Collab. and Virgo Collab.), “Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO600, LIGO, and Virgo detectors”, Phys. Rev. D 89, 122004 (2014); arXiv:1405.1053v2.

    Article  ADS  Google Scholar 

  6. P. Antonioli, et al., “SNEWS: The SuperNova early warning system”, New J. Phys. 6, 114 (2004); arXiv:astro-ph/0406214v2.

    Article  ADS  Google Scholar 

  7. K. Scholberg, “The SuperNova early warning system”, Astron. Nachr. 329(3), 337–339 (2008); arXiv:0803.0531v1.

    Article  ADS  Google Scholar 

  8. P. J. Sutton, “Upper limits from counting experiments with multiple pipelines”, Class. Quant. Grav. 26(24), 245007 (2009); arXiv:0905.4089v2.

    Article  ADS  MATH  Google Scholar 

  9. S. Klimenko, I. Yakushin, A. Mercer, G. Mitselmakher, “A coherent method for detection of gravitational wave bursts”, Class. Quant. Grav. 25(11), 114029 (2008); arXiv:0802.3232v2.

    Article  ADS  Google Scholar 

  10. W. Fulgione, N. Mengotti-Silva, L. Panaro, “Neutrino burst identification in underground detectors”, NIMPA 368(2), 512–516 (1996).

    Article  ADS  Google Scholar 

  11. G. Pagliaroli, F. Vissani, M. L. Costantini, A. Ianni, “Improved analysis of SN1987A antineutrino events”, Astropart. Phys. 31(3), 163–176 (2009); arXiv:0810.0466v1.

    Article  ADS  Google Scholar 

  12. T. Totani, K. Sato, H. E. Dalhed, J. R. Wilson, “Future detection of supernova neutrino burst and explosion mechanism”, Astrophys. J. 496(1), 216–225 (1998); arXiv:astro-ph/9710203v1.

    Article  ADS  Google Scholar 

  13. L. Hüdepohl, B. Müller, H.-Th. Janka, A. Marek, G. G. Raffelt, “Neutrino signal of electron-capture supernovae from core collapse to cooling”, Phys. Rev. Lett. 104(25), 251101 (2010); Erratum-ibid. 105(24), 249901 (2010); arXiv:0912.0260v3.

    Article  ADS  Google Scholar 

  14. K. Sumiyoshi, S. Yamada, H. Suzuki, “Dynamics and neutrino signal of black hole formation in non-rotating failed supernovae. I. EOS dependence”, Astrophys. J. 667(1), 382–394 (2007); arXiv:0706.3762v1.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Gromov.

Additional information

Original Russian Text © M.B. Gromov, 2017, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2017, Vol. 48, No. 6.

Talk at the International Session-Conference of SNP PSD RAS “Physics of Fundamental Interactions”, JINR, Dubna, April 12–15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromov, M.B. The methodology of the search for a correlated signal from a supernova explosion using the data of gravitational wave detectors and neutrino observatories. Phys. Part. Nuclei 48, 977–980 (2017). https://doi.org/10.1134/S1063779617060181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779617060181

Navigation