Skip to main content
Log in

A real signal and its states

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The paper describes the general physical theory of signals, carriers of information, which supplements Shannon’s abstract classical theory and is applicable in much broader fields, including nuclear physics. It is shown that in the absence of classical noise its place should be taken by the physical threshold of signal perception for objects of both macrocosm and microcosm. The signal perception threshold allows the presence of subthreshold (virtual) signal states. For these states, Boolean algebra of logic (A = 0/1) is transformed into the “algebraic logic” of probabilities (0 ≤ a ≤ 1). The similarity and difference of virtual states of macroand microsignals are elucidated. “Real” and “quantum” information for computers is considered briefly. The maximum information transmission rate is estimated based on physical constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Lindley, On a Measure of the Information Provided by an Experiment, Collected vol. (Inostr. Liter., Moscow, 1959) [Ann. Math. Stat. 7, 986 (1956)].

    MATH  Google Scholar 

  2. L. Brillouin, Science and Information Theory (Academic Press, New York, 1962; Fizmatgiz, Moscow, 1960).

    MATH  Google Scholar 

  3. R. Feynman, “Quantum mechanical computers,” Optics News 11 (2), 11 (1985).

    Article  Google Scholar 

  4. H. F. Harmuth, Information Theory Applied to Space-Time Physics (World Scientific, 1992).

    MATH  Google Scholar 

  5. B. B. Kadomtsev, “Dynamics and information,” Usp. Fiz. Nauk 164, 449 (1994) [Phys. Usp. 37, 425 (1994)].

    Article  Google Scholar 

  6. S. Ya. Kilin, “Quantum information,” Usp. Fiz. Nauk 169 (5), 507 (1999) [Phys. Usp. 42 435–452 (1999)].

    Article  Google Scholar 

  7. V. A. Kotel’nikov, “On the Transmission capacity of “ether” and wire in electric communications,” in Proc. of the 1st All-Union Congress on the Technical Reconstruction of Communication Facilities and Development of Low-Power Industry, (Red. Svyazi RKKA, 1933). Reprint in Modern Sampling Theory: Mathematics and Applications, Editors: J. J. Benedetto und PJSG Ferreira, Birkhauser (Boston) 2000.

    Google Scholar 

  8. C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J, 27, 379–423 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  9. I. S. Gonorovskii, Radiotechnical Circuits and Signals (Radio i Svyaz’, Moscow, 1986) [in Russian].

    Google Scholar 

  10. S. G. Basiladze, “Signal, data, and information in physical measurements,” Fiz. Elem. Chastits At. Yadra 31, 634 (2000) [Phys. Part. Nucl. 31, 312 (2000)].

    Google Scholar 

  11. S. G. Basiladze, “Threshold and Maximum Information Correlations for Signals,” Preprint NIIYaF MGU 2004-20/759 (Moscow, 2004).

    Google Scholar 

  12. S. G. Basiladze, “Physical Features of Signal Addition and Decomposition and their Information Consequences,” Preprint NIIYaF MGU 2006-2/801 (Moscow, 2006).

    Google Scholar 

  13. S. G. Basiladze, “Threshold Limits Introduced by Receiver into Transmission Section of Signals,” Preprint NIIYaF MGU 2006-4/801 (Moscow, 2006).

    Google Scholar 

  14. S. G. Basiladze, “Threshold and Maximum Information Restrictions of Dynamics in a Microcosm,” Preprint NIIYaF MGU 2007-13/834 (Moscow, 2007).

    Google Scholar 

  15. S. G. Basiladze, “Signal physics,” Fiz. Elem. Chastits At. Yadra 40, 1470 (2009) [Phys. Part. Nucl. 40 (6), 773 (2009)].

    Google Scholar 

  16. S. G. Basiladze, Infology–Signal, States, Data, Information, (Editus, Moscow, 2015) [in Russian].

    Google Scholar 

  17. N. Robotti and M. Badino, “Max Planck and the “Constants of Nature”,” Annals of Science 58, 137–162 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Wiener, Cybernetics (MIT Press, Cambridge, 1965; Nauka, Moscow, 1983).

    Google Scholar 

  19. T. Bell, I. H. Witten, and J. G. Cleary, “Modeling for text compression,” ACM Comput. Surv. 21, 557 (1989).

    Article  Google Scholar 

  20. R. Feynmann, R. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, MA, 1965; Mir, Moscow, 1966), Vol. 8.

    Google Scholar 

  21. C. Cottini, E. Gatti, and V. Svelto, “A new method for analog to digital conversion,” NIM 24, 241 (1963).

    Article  Google Scholar 

  22. Zh. Toshich, Izvestiya AN SSSR. Tekhnicheskaya Kibernetika, No. 36, 113 (1967).

  23. V. A. Kalinnikov, “Application of multiple-valued logic in digital technology (review),” Prib. Tekh. Eksp. 5, 5–17 (2006) [Instrum. Exp. Tech. 49 (6), 5–14 (2006).

  24. R. L. Goodstein, Boolean Algebra (Pergamon Press, 1963).

    MATH  Google Scholar 

  25. A. Yu. Khrennikov, Introduction into Quantum Theory of Information (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  26. A. S. Holevo, Quantum Systems, Channels, Information (MTsNMO, Moscow, 2010) [in Russian].

    MATH  Google Scholar 

  27. T. A. Armstrong, W. Beusch, A. Burns, I. J. Bloodworth, E. Calligarich, G. Cecchet, R. Dolfini, G. Liguori, L. Mandelli, M. Mazzanti, F. Navach, A. Palano, V. Picciarelli, L. Perini, Y. Pons, NIM 175, 543 (1980).

    Article  Google Scholar 

  28. K. A. Valiev and A. A. Kokin, Quantum Computers: Hope and Reality (Scientific and Publishing Center “Regul. i Khaotich. Mekhan.”, Izhevsk, 2001) [in Russian].

    Google Scholar 

  29. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Sci. Statist. Comput. 26, 1484–1509 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. London, A, 439 (1907), 553–558 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Basiladze.

Additional information

Original Russian Text © S.G. Basiladze, 2017, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2017, Vol. 48, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basiladze, S.G. A real signal and its states. Phys. Part. Nuclei 48, 488–508 (2017). https://doi.org/10.1134/S1063779617030030

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779617030030

Navigation