Skip to main content
Log in

The search for neutrino bursts from supernovae with Baksan underground scintillation telescope

  • The International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics” February 1–Ferbuary 8, 2015, Valday, Russia
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The current status of the experiment on recording neutrino bursts from core collapse stars is presented. The actual observational time is 29.76 years. An upper bound of the mean frequency of core collapse supernovae in our Galaxy is f col < 0.077 year–1 (90% CL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, Y. Oyama, N. Sato, A. Suzuki, M. Takita, Y. Totsuka, T. Kifune, T. Suda, K. Takahashi, T. Tanimori, K.Miyano, M. Yamada, E. W. Beier, L. R. Feldscher, S. B. Kim, A. K. Mann, F. M. Newcomer, R. Van, W. Zhang, and B. G. Cortez, “Observation of a neutrino burst from the supernova SN1987A,” Phys. Rev. Lett. 58, 1490 (1987).

    Article  ADS  Google Scholar 

  2. R. M. Bionta, G. Blewitt, C. B. Bratton et al. (IMB Collab.), “Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud,” Phys. Rev. Lett. 58, 1494 (1987).

    Article  ADS  Google Scholar 

  3. E. N. Alekseev, L. N. Alekseeva, I. V. Krivosheina, and V. I. Volchenko, “Detection of the neutrino signal from SN, 1987A using the INR Baksan underground scintillation telescope,” JETP Lett. 45, 589 (1987).

    ADS  Google Scholar 

  4. M. Aglietta, G. Badino, G. Bologna, C. Castagnoli, A. Castellina, W. Fulgione, P. Galeotti, O. Saavedra, G. Trinchero, S. Vernetto, V. L. Dadykin, O. G. Ryazhskaya, G. T. Zatsepin, and V. F. Yakushev, “On the event observed in the Mont Blanc Underground Neutrino observatory during the occurrence of Supernova 1987A,” Europhys. Lett. 3, 1315 (1987).

    Article  ADS  Google Scholar 

  5. G. Gamow and M. Shoenberg, “The possible role of neutrinos in stellar evolution,” Phys. Rev. 58, 1117 (1940).

    Article  ADS  Google Scholar 

  6. Ya. B. Zeldovich and O. Kh. Guseinov, “Neutronization of matter during collapse and the neutrino spectrum,” Dokl. Akad. Nauk SSSR 162, 791 (1965).

    Google Scholar 

  7. S. A. Colgate and R. H. White, “The hydrodynamic behavior of supernovae explosions,” Astrophys. J. 143, 626 (1966).

    Article  ADS  Google Scholar 

  8. T. J. Loredo and D. Q. Lamb, “Bayesian analysis of neutrinos from supernova SN1987A,” Phys. Rev. D 65, 063002 (2002).

    Article  ADS  Google Scholar 

  9. G. Pagliaroli, F. Vissani, M. L. Costantini, and A. Ianni, “Improved analysis of SN1987A antineutrino events,” Astropart. Phys. 31, 163 (2009).

    Article  ADS  Google Scholar 

  10. S. M. Adams, C. S. Kochanek, J. F. Beacom, M. R. Vagins, and K. Z. Stanek, “Observing the next galactic supernova,” Astrophys. J. 778, 164 (2013).

    Article  ADS  Google Scholar 

  11. M. Ikeda, A. Takeda, Y. Fukuda et al. (Super-Kamiokande Collab.), “Search for supernova neutrino bursts at Super-Kamiokande,” Astrophys. J. 669, 519 (2007).

    Article  ADS  Google Scholar 

  12. E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, V. N. Zakidyshev, G. D. Korotkii, N. A. Metlinskii, V. Ya. Poddubny’i, A. Yu. Reutov, A. E. Chudakov, and A. F. Yanin, “Upper bound on the collapse rate of massive stars in the Milky Way given by neutrino observations with the Baksan underground telescope,” Zh. Eksp. Teor. Fiz. 104, 2897 (1993).

    Google Scholar 

  13. R. V. Novoseltseva, M. M. Boliev, I. M. Dzaparova, M. M. Kochkarov, S. P. Mikheyev, Yu. F. Novoseltsev, V. B. Petkov, P. S. Striganov, V. I. Volchenko, G. V. Volchenko, and A. F. Yanin, “The search for neutrino bursts from core collapse supernovae at the Baksan underground scintillation telescope,” Proceedings of the 31th ICRC, Lodz., 2009.

    Google Scholar 

  14. M. Ambrosio et al. (MACRO Collab.), “Search for stellar gravitational collapses with the MACRO detector,” Eur. Phys. J. C 37, 265 (2004).

    Article  Google Scholar 

  15. M. Aglietta et al. (LVD Collab.), “The most powerful scintillator supernovae detector: LVD,” Nuovo Cimento A 105, 1793 (1992).

    Article  ADS  Google Scholar 

  16. N. Yu. Agafonova, M. Aglietta, P. Antonioli et al. (LVD Collab.), “Study of the effect of neutrino oscillations on the supernova neutrino signal in the LVD detector,” Astropart. Phys. 27, 254 (2007).

    Article  ADS  Google Scholar 

  17. J. Ahrens et al. (AMANDA Collab.), “Search for supernova neutrino bursts with the AMANDA detector,” Astropart. Phys. 16, 345 (2002).

    Article  ADS  Google Scholar 

  18. B. Aharmim, S. N. Ahmed, A. E. Anthony, N. Barros, E. W. Beier, A. Bellerive, B. Beltran, M. Bergevin, S. D. Biller, and K. Boudjemline, “Low multiplicity burst search at the Sudbury neutrino observatory,” Astrophys. J. 728, 83 (2011).

    Article  ADS  Google Scholar 

  19. T. Lund, A. Marek, C. Lunardini, H.-T. Janka, and G. Raffelt, “Fast time variations of supernova neutrino fluxes and their detectability,” Phys. Rev. D 82, 063007 (2010).

    Article  ADS  Google Scholar 

  20. G. Bellini et al. (Borexino Collab.), “First real time detection of 7Be solar neutrinos by Borexino,” Phys. Lett. B 658 (4), 101 (2007).

    ADS  Google Scholar 

  21. G. Bellini, “Novel results on low energy neutrino physics,” Proceedings of the Talk at TAUP 2011 conference, Munich, 5–9 Sept. 2011.

    Google Scholar 

  22. K. Eguchi et al. (KamLAND Collab.), “First results from KamLAND: Evidence for reactor antineutrino disappearance,” Phys. Rev. Lett. 90, 021802 (2003).

    Article  ADS  Google Scholar 

  23. E. N. Alexeyev, V. V. Alexeyenko, Yu. M. Andreyev, V.N. Bakatanov, A. V. Butkevich, A. E. Chudakov, M. D. Galperin, A. A. Gitelson, V. I. Gurentsov, A. E. Danshin, V. A. Dogujaev, V. L. Dadikin, Ya. S. Elensky, V. A. Kozyarivsky, I. M. Kogai, N. F. Klimenko, A. A. Kiryushin, Yu. N. Konovalov, B. A. Makoev, V. Ya. Markov, Yu. Ya. Markov, Yu. V. Malovichko, N. A. Metlinsky, A. R. Mishelev, S. P. Mikheyev, Yu. F. Novoseltsev, V. G. Sborshikov, V. V. Sklyarov, V. I. Stepanov, Yu. V. Stenkin, Yu. R. Sulla-Petrovsky, T. I. Tulupova, A. V. Voevodsky, V. I. Volchenko, and V. N. Zakideshev, “Baksan underground scintillation telescope,” Proceedings of the 16 ICRC, Kyoto, 1979, vol. 10, p. 276.

    Google Scholar 

  24. V. M. Achkasov, V. N. Bakatanov, Yu. F. Novoseltsev, R. V. Novoseltseva, A. M. Semenov, Yu. V. Sten’kin, and A. E. Chudakov, “An investigation of the energy spectrum and inelastic muon interaction at the Baksan Underground scintillation telescope,” Bull. Russ. Acad. Sci. Phys. 50, 2224 (1986).

    Google Scholar 

  25. V. S. Imshennik and D. K. Nadezhin, “Final stages of star evolution and supernova explosions,” Itogi Nauki i Tehniki, ser. Astronomy 21, 63 (1982).

    Google Scholar 

  26. W. Hillebrandt and P. Hoflish, “The supernova 1987A in the Large Magellanic Cloud,” Rep. Prog. Phys. 52, 1421 (1989).

    Article  ADS  Google Scholar 

  27. J. Pantaleone, “Neutrino oscillations at high densities,” Phys. Lett. B 287, 128 (1992).

    Article  ADS  Google Scholar 

  28. R. F. Sawyer, “Speed-up of neutrino transformations in a supernova environment,” Phys. Rev. D 72, 045003 (2005).

    Article  ADS  Google Scholar 

  29. H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, “Simulation of coherent non-linear neutrino flavor transformation in the supernova environment I: Correlated neutrino trajectories, “ Phys. Rev. D 74, 105014 (2006).

  30. I. Tamborra, G. Raffelt, F. Hanke, H.-T. Janka, and B. Muller, “Neutrino emission characteristics and detection opportunities based on three-dimensional supernova simulations,” Phys. Rev. D 90, 045032 (2014); arXiv: 1406.0006 (2014).

    Article  ADS  Google Scholar 

  31. V. S. Imshennik, “Explosion mechanism in supernovae collapse,” Space Sci. Rev. 74, 325 (1995).

    Article  ADS  Google Scholar 

  32. V. Bajkov, V. M. Suslin, V. M. Chechetkin, V. Bychkov, and L. Stenflo, “Radiation of a neutrino mechanism for type II supernovae,” Russ. Astronom. J. 84 (4), 308 (2007).

    Google Scholar 

  33. R. V. Novoseltseva, M. M. Boliev, G. M. Vereshkov, V. I. Volchenko, G. V. Volchenko, I. M. Dzaparova, M.M. Kochkarov, M. G. Kostyuk, Yu. F. Novoseltsev, V. B. Petkov, P. S. Striganov, and A. F. Yanin, “The search for neutrino bursts from collapsing core supernovae at the Baksan underground scintillation telescope,” Bull. Russ. Acad. Sci. Phys. 75, 419 (2011).

    Article  Google Scholar 

  34. T. D. Brandt, A. Burrows, C. D. Ott, and E. Livne, “Results from core-collapse simulations with multidimensional, multiangle neutrino transport,” Astrophys. J. 728, 8 (2011).

    Article  ADS  Google Scholar 

  35. B. Muller, H.-Th. Janka, and A. Marek, “A new multidimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae II. Relativistic explosion models of core-collapse supernovae,” Astrophys. J. 756, 84 (2012).

    Article  ADS  Google Scholar 

  36. B. Muller, H.-T. Janka, and A. Heger, “New twodimensional models of supernova explosions by the neutrino-heating mechanism: Evidence for different instability regimes in collapsing stellar cores,” Astrophys. J. 761, 72 (2012).

    Article  ADS  Google Scholar 

  37. F. Hanke, A. Marek, B. Muller, and H.-Th. Janka, “Is strong SASI activity the key to successful neutrinodriven supernova explosions?,” Astrophys. J. 755, 138 (2012).

    Article  ADS  Google Scholar 

  38. T. Takiwaki, K. Kotake and Y. Suwa, “Three-dimensional hydrodynamic core-collapse supernova simulations for an 11.2 Msun star with spectral neutrino transport,” Astrophys. J. 749, 98 (2012).

    Article  ADS  Google Scholar 

  39. A. Burrows, J. Dolence, and J. Murphy, “An investigation into the character of pre-explosion core-collapse supernova shock motion,” Astrophys. J. 759, 5 (2012).

    Article  ADS  Google Scholar 

  40. C. D. Ott, E. Abdkimalov, P. Moesta, R. Haas, S. Drasco, E. O’Connor, C. Reisswig, C. Meakin, and E. Schnetter, “General-relativistic simulations of three-dimensional core-collapse supernovae,” Astrophys. J. 768, 115 (2013).

    Article  ADS  Google Scholar 

  41. I. Tamborra, F. Hanke, H. Janka, B. Muller, G. Raffelt, and A. Marek, “Self-sustained asymmetry of leptonnumber emission: A new phenomenon during the supernova shock-accretion phase in three dimensions,” Astrophys. J. 792, 96 (2014); arXiv:1402.5418 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Novoseltseva.

Additional information

Talk at the International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics”, Valdai, Russia, February 1–7, 2015.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novoseltseva, R.V., Boliev, M.M., Dzaparova, I.M. et al. The search for neutrino bursts from supernovae with Baksan underground scintillation telescope. Phys. Part. Nuclei 47, 968–974 (2016). https://doi.org/10.1134/S1063779616060198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616060198

Navigation