Skip to main content
Log in

Nondestructive diagnostics of charged particle beams in accelerators

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The basic techniques for nondestructive diagnostics and detection of losses of charged particle beams used in accelerator engineering are reviewed. The data provided may help choose the systems for diagnostics and detection of losses of beams and give a qualitative picture of the operation principles of such devices. Quantitative characteristics that define the limits of applicability of each diagnostic technique are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. McGinnis, “The design of beam pickup and kickers,” AIP Conf. Proc. 333, 64–77 (1995).

    Article  ADS  Google Scholar 

  2. M. Ross, J. Frisch, L. Hendrickson, D. McCormick, V. Vogel, H. Hayano, and J. Urakawa, “Very high resolution RF cavity BPM,” in Proc. Particle Accelerator Conf., 2003 (IEEE, 2003), Vol. 4, pp. 2545–2547. doi 10.1109/PAC.2003.1289182

    Article  ADS  Google Scholar 

  3. L. N. Vyacheslavov, M. V. Ivantsivskii, O. I. Meshkov, S. S. Popov, and V. V. Smaluk, “Methods of optical diagnostics of electron-positron beams and interaction between plasma and high-current electron beam,” Phys. Part. Nucl. 43, 231–261 (2012).

    Article  Google Scholar 

  4. E. I. Zinin and O. I. Meshkov, “Optical dissector for longitudinal beam profile measurement,” J. Instrum. 10, P10024 (2015).

    Article  Google Scholar 

  5. S. G. Garanin, S. A. Bel’kov, G. S. Rogozhnikov, et al., “PS-1/S1 picosecond streak camera application for multichannel laser system diagnostics,” Quantum Electron. 44, 798 (2014).

    Article  ADS  Google Scholar 

  6. P. Puzo, J. Buon, J. Jeanjean, F. LeDiberder, and V. Lepeltier, “A submicronic beam size monitor for the final focus test beam,” AIP Conf. Proc. 390, 273–280 (1997).

    Article  ADS  Google Scholar 

  7. A. V. Bubley, V. I. Kudelainen, V. V. Parkhomchuk, B. M. Smirnov, and V. S. Tupikov, “Magnesium jet profile monitor,” in Proc. 17th Int. Conf. on High-Energy Accelerators, Dubna, 1998, pp. 357–359.

    Google Scholar 

  8. T. Shintake, “Beam profile monitors for very small transverse and longitudinal dimensions using laser interferometer and heterodyne techniques,” AIP Conf. Proc. 390, 130–151 (1997).

    Article  ADS  Google Scholar 

  9. K. Roman, T. Mayer, P. Kuske, R. Thornagel, and G. Ulm, “Beam diagnostics at the BESSY I electron storage ring with Compton backscattered laser photons: Measurement of the electron energy and related quantities,” Nucl. Instrum. Methods Phys. Res., A 384, 293–298 (1997).

    Article  ADS  Google Scholar 

  10. V. E. Blinov, A. V. Bogomyagkov, N. Yu. Muchnoi, S. A. Nikitin, I. B. Nikolaev, A. G. Shamov, and V. N. Zhilich, “Review of beam energy measurements at VEPP-4M collider: KEDR/VEPP-4M,” Nucl. Instrum. Methods Phys. Res., A 598, 23–30 (2009).

    Article  ADS  Google Scholar 

  11. A. D. Bukin et al., in Proc. V International Symp. on High-Energy and Elementary Particle Physics, Warsaw, 1975, pp. 138–162.

    Google Scholar 

  12. A. Hofmann, “Physical phenomena used in beam observation,” in Frontiers of Particle Beams; Observation, Diagnosis and Correction, Ed. by M. Month and S. Turner (Springer, 1989), pp. 367–379.

    Google Scholar 

  13. S. R. Smith, “Beam position monitor engineering,” AIP Conf. Proc. 390, 50–65 (1997).

    Article  ADS  Google Scholar 

  14. S. H. Kim, “Calculating BPM coefficients with Green’s reciprocation theorem,” in Proc. Particle Accelerator Conf., Chicago, 2001 (IEEE, 2001), Vol. 2, pp. 1348–1350.

    ADS  Google Scholar 

  15. M. Viti, “Resonant cavities as beam position monitor” (2009). https://www-zeuthen.desy.de/ILC/beam/note/ cavity.pdf

    Google Scholar 

  16. V. Smaluk, Particle Beam Diagnostics for Accelerators: Instruments and Methods (VDM, Saarbrucken, 2009).

    Google Scholar 

  17. J. Durand and H. Braun, “Wall current monitors for CTF3” (2000). http://clic-study.web.cern.ch/sites/clicstudy.web.cern.ch/themes/cliccern/pdfs/notes/CTF3 Note014.pdf

    Google Scholar 

  18. P. Cameron, R. Connolly, R. Michnoff, V. Radeka, W. Ryan, T. Shea, R. Sikora, D. Stephani, S. Tepikian, and N. Tsoupas, “The RHIC ionization beam profile monitor,” in Proc. Particle Accelerator Conf., New York, 1999 (IEEE, 1999), Vol. 3, pp. 2114–2116.

    ADS  Google Scholar 

  19. M. Plum et al., “Status of the SNS ring power ramp up,” in Proc. 11th European Particle Accelerator Conf., Genoa, 2008, pp. 3560–3562.

    Google Scholar 

  20. V. Kamerdzhiev and J. Dietrich, “Ionisation beam profile monitor at the cooler synchrotron COSY-Jülich,” in Proc. 6th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators, Mainz, 2003, p. 140.

    Google Scholar 

  21. T. Giacomini et al., “Ionization profile monitors IPM@GSI,” in Proc. 10th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators, Hamburg, 2011, p. 419.

    Google Scholar 

  22. G. Burtin et al., “The luminescence profile monitor of the CERN SPS,” in Proc. 7th European Particle Accelerator Conf., Vienna, 2000, pp. 256–258.

    Google Scholar 

  23. T. Fujisawa, Y. Hashimoto, T. Morimoto, and Y. Fujita, “Multi-pole magnets to focus an O2 sheet beam for a non-destructive beam-profile monitor,” Nucl. Instrum. Methods Phys. Res., A 506, 50–59 (2003).

    Article  ADS  Google Scholar 

  24. A. Variola, R. Jung, and G. Ferioli, “Characterization of a nondestructive beam profile monitor using luminescent emission,” Phys. Rev. ST Accel. Beams 10, 122801 (2007).

    Article  ADS  Google Scholar 

  25. F. Becker et al., “Beam induced fluoresence monitor and imaging spectrography of different working gases,” in Proc. 9th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators, Basel, 2009, pp. 161–163.

    Google Scholar 

  26. T. Bergmark et al., “Transverse cooling times and cooled beam profiles at CELSIUS” (1996). http://accelconf.web.cern.ch/AccelConf/e96/PAPERS/THPL/THP096L.PDF

    Google Scholar 

  27. V. V. Parkhomchuk and A. N. Skrinskii, “Electron cooling: 35 years of development,” Phys.-Usp. 43, 433 (2000).

    Article  ADS  Google Scholar 

  28. P. K. Roy, S. S. Yu, E. Henestroza, et al., “Electronbeam diagnostic for space-charge measurement of an ion beam,” Rev. Sci. Instrum. 76, 023301 (2005).

    Article  ADS  Google Scholar 

  29. A. G. Ramm and A. I. Katsevich, The Radon Transform and Local Tomography (CRC Press, Boca Raton, 1996).

    MATH  Google Scholar 

  30. F. Natterer, The Mathematics of Computerized Tomography (Vieweg+Teubner Verlag, 1986; Mir, Moscow, 1990).

    MATH  Google Scholar 

  31. P. V. Logachev, D. A. Malyutin, and A. A. Starostenko, “Application of a low-energy electron beam as a tool of nondestructive diagnostics of intense charged-particle beams,” Instrum. Exp. Tech. 51, 1–27 (2008).

    Article  Google Scholar 

  32. P. V. Logatchov, A. A. Starostenko, et al., “Nondestructive singlepass monitor of longitudinal charge distribution in an ultrarelativistic electron bunch,” in Proc. Particle Accelerator Conf., New York, 1999 (IEEE, 1999), Vol. 3, pp. 2167–2169.

    ADS  Google Scholar 

  33. A. Aleksandrov, S. Assadi, S. Cousineau, et al., “Feasibility study of using an electron beam for profile measurements in the SNS accumulator ring,” in Proc. Particle Accelerator Conf., 2005 (IEEE, 2005), pp. 2586–2588.

    Google Scholar 

  34. P. V. Logachev, D. A. Malyutin, and A. A. Starostenko, “Application of a low-energy electron beam as a tool of nondestructive diagnostics of intense charged-particle beams,” Instrum. Exp. Tech. 51, 1–27 (2008).

    Article  Google Scholar 

  35. X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer, and W. Seidel, “Subpicosecond electro-optic measurement of relativistic electron pulses,” Phys. Rev. Lett. 85, 3404 (2000).

    Article  ADS  Google Scholar 

  36. I. Wilke, A. M. MacLeod, W. A. Gillespie, G. Berden, G. M. H. Knippels, and A. F. G. van der Meer, “Singleshot electron-beam bunch length measurements,” Phys. Rev. Lett. 88, 124801 (2002).

    Article  ADS  Google Scholar 

  37. B. Steffen, V. Arsov, G. Berden, W. A. Gillespie, S. P. Jamison, A. M. MacLeod, A. F. G. van der Meer, P. J. Phillips, H. Schlarb, B. Schmidt, and P. Schmüser, “Electro-optic time profile monitors for femtosecond electron bunches at the soft x-ray free-electron laser FLASH,” Phys. Rev. Spec. Top.–Accel. Beams 12, 032802 (2009).

    Article  ADS  Google Scholar 

  38. S. P. Jamison, G. Berden, P. J. Phillips, W. A. Gillespie, and A. M. MacLeod, “Upconversion of a relativistic Coulomb field terahertz pulse to the near infrared,” Appl. Phys. Lett. 96, 231114 (2010).

    Article  ADS  Google Scholar 

  39. G. Berden, W. A. Gillespie, S. P. Jamison, E.-A. Knabbe, A. M. MacLeod, A. F. G. van der Meer, P. J. Phillips, H. Schlarb, B. Schmidt, P. Schmüser, and B. Steffen, “Benchmarking of electro-optic monitors for femtosecond electron bunches,” Phys. Rev. Lett. 99, 164801 (2007).

    Article  ADS  Google Scholar 

  40. G. Berden, S. P. Jamison, A. M. MacLeod, W. A. Gillespie, B. Redlich, and A. F. G. van der Meer, “Electro-optic technique with improved time resolution for real-time, nondestructive, single-shot measurements of femtosecond electron bunch profiles,” Phys. Rev. Lett. 93, 114802 (2004).

    Article  ADS  Google Scholar 

  41. G. Berden, B. Redlich, A. F. G. van der Meer, S. P. Jamison, A. M. MacLeod, and W. A. Gillespie, “High temporal resolution, single-shot electron bunch-length measurements,” in Proc. 9th European Particle Accelerator Conf., Lucerne, 2004, pp. 2700–2702.

    Google Scholar 

  42. R. Klein et al., “Measurement of the BESSY II electron beam energy by Compton-backscattering of laser photons,” Nucl. Instrum. Methods Phys. Res., A 486, 545–551 (2002).

    Article  ADS  Google Scholar 

  43. V. E. Blinov et al., “Beam energy and energy spread measurement by Compton backscattering of laser radiation at the VEPP-4M collider,” ICFA Beam Dyn. Newsl., No. 48, 195–207 (2009).

    Google Scholar 

  44. A. N. Aleshaev et al., “VEPP-4M accelerator complex,” Preprint No. 2011-20 (Budker Inst. of Nuclear Physics, Novosibirsk, 2011).

    Google Scholar 

  45. A. A. Sokolov and I. M. Ternov, Dokl. Akad. Nauk SSSR 153, 1052–1054 (1963).

    Google Scholar 

  46. A. E. Bondar et al., in Proc. 12th International Conf. on High-Energy Accelerators, Batavia, 1983, pp. 240–243.

    Google Scholar 

  47. V. E. Blinov, A. V. Bogomyagkov, N. Yu. Muchnoi, S. A. Nikitin, I. B. Nikolaev, A. G. Shamov, and V. N. Zhilich, “Review of beam energy measurements at VEPP-4M collider: KEDR/VEPP-4M,” Nucl. Instrum. Methods Phys. Res., A 598, 23–30 (2009).

    Article  ADS  Google Scholar 

  48. S. Nikitin and I. Nikolaev, in Proc. European Particle Accelerator Conf., Edinburgh, 2006, pp. 1184–1186.

    Google Scholar 

  49. V. N. Bayer, V. M. Katkov, and V. M. Strakhovenko, Dokl. Akad. Nauk SSSR 241, 797 (1978)

    Google Scholar 

  50. S. Nikitin and I. Nikolaev, Preprint No. 2010-42 (Budker Inst. of Nuclear Physics, Novosibirsk, 2010).

    Google Scholar 

  51. N. I. Zinevich and E. I. Shubin, Preprint No. 84-11 (Budker Inst. of Nuclear Physics, Novosibirsk, 1984).

    Google Scholar 

  52. Ya. S. Derbenev, A. M. Kondratenko, and A. N. Skrinsky, Part. Accel. 9 (4), 247–265 (1979).

    Google Scholar 

  53. V. A. Sidorov, “Results of experiments at VEPP-2M,” in Proc. XVIII Int. Conf. on High-Energy Physics, Tbilisi, 1976, Vol. 1, p. 13

    Google Scholar 

  54. A. N. Skrinskii, “Radiation polarization: generation, control, and application,” in Proc. XVIII Int. Conf. on High-Energy Physics, Tbilisi, 1976, Vol. 1, p. 22.

    Google Scholar 

  55. S. A. Nikitin, Preprint No. 2005-54 (Budker Inst. of Nuclear Physics, Novosibirsk, 2005).

    Google Scholar 

  56. O. V. Anchugov et al., “Use of the methods of accelerator physics in precision measurements of particle masses at the VEPP-4 complex with the KEDR detector,” Instrum. Exp. Tech. 53, 15–28 (2010).

    Article  Google Scholar 

  57. O. V. Anchugov et al., “Experiments on the physics of charged particle beams at the VEPP-4M electronpositron collider,” J. Exp. Theor. Phys. 109, 590–601 (2009).

    Article  ADS  Google Scholar 

  58. V. E. Blinov et al., “Absolute calibration of particle energy at VEPP-4M,” Nucl. Instrum. Methods Phys. Res., A 494, 81–85 (2002)

    Article  ADS  Google Scholar 

  59. V. E. Blinov et al., “Analysis of errors and estimation of accuracy in the experiment on precise mass measurement of J' mesons and tlepton on the VEPP-4M collider,” Nucl. Instrum. Methods Phys. Res., A 494, 68–74 (2002).

    Article  ADS  Google Scholar 

  60. A. Bogomyagkov, A. Shamov, and S. Nikitin, in Proc. 20th Russian Conf. on Charged Particle Accelerators, Novosibirsk, 2006 (Ob’edin. Inst. Yad. Issled., Dubna, 2006), pp. 153–155

    Google Scholar 

  61. S. Nikitin, in Proc. 20th Russian Conf. on Charged Particle Accelerators, Novosibirsk, 2006 (Ob”edin. Inst. Yad. Issled., Dubna, 2006), pp. 150–152.

    Google Scholar 

  62. A. Bogomyagkov et al., in Proc. 8th European Particle Accelerator Conf., Paris, 2002, pp. 386–388.

    Google Scholar 

  63. A. Bogomyagkov et al., in Proc. 22nd Particle Accelerator Conf., Albuquerque, 2007, p. 63.

    Google Scholar 

  64. A. Bogomyagkov, S. Nikitin, V. Telnov, and G. Tumaikin, “Estimation of errors in definition of central mass energy in high precision experiments on colliding beams,” in Proc. 3rd Asian Particle Accelerator Conf., Gyeongju, 2004, pp. 276–278.

    Google Scholar 

  65. K. Wittenburg, in Proc. 8th European Particle Accelerator Conf., Paris, 2002, p. 109.

  66. P. Berkvens, “Lecture notes on radiation and safety,” presented at Joint Universities Accelerator School (Archamps, 2003).

    Google Scholar 

  67. A. H. Sullivan, A Guide to Radiation and Radioactivity Levels Near High Energy Particle Accelerators (Nuclear Technology, 1992).

    Google Scholar 

  68. R. H. Thomas, “Radiation effects and protection,” in Handbook of Acceleration Physics and Engineering, Ed. by A. W. Chao and M. Tigner (World Scientific, 1999).

    Google Scholar 

  69. R. E. Shafer, “A tutorial on beam loss monitoring,” AIP Conf. Proc. 648, 44 (2002).

    Article  ADS  Google Scholar 

  70. P. Forckand and T. Hoffmann, in Proc. 5th European Workshop on Diagnostics and Beam Instrumentation, Grenoble, 2001, p. 129.

    Google Scholar 

  71. G. F. Knoll, Radiation Detection and Measurement (Willey, New York, 1999).

    Google Scholar 

  72. http://www.ssdi-power.com/Resources/Documents/%5 B300%5DSPD9441_DS.pdf

  73. G. F. Knoll, Radiation Detection and Measurement (Willey, New York, 1999).

    Google Scholar 

  74. R. E. Shafer et al., in Proc. 12th Int. Conf. on HighEnergy Accelerators, Batavia, 1983, p. 609

    Google Scholar 

  75. D. Gassner et al., in Proc. 9th Beam Instrumentation Workshop, Cambridge, 2000, p. 392.

    Google Scholar 

  76. B. Dehning, in Proc. 7th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators, Lyon, 2005, p. 117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Logachev.

Additional information

Original Russian Text © P.V. Logachev, O.I. Meshkov, A.A. Starostenko, D.A. Nikiforov, A.V. Andrianov, Yu.I. Maltseva, A.E. Levichev, F.A. Emanov, 2016, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016, Vol. 47, No. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logachev, P.V., Meshkov, O.I., Starostenko, A.A. et al. Nondestructive diagnostics of charged particle beams in accelerators. Phys. Part. Nuclei 47, 236–269 (2016). https://doi.org/10.1134/S1063779616020040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616020040

Keywords

Navigation