Skip to main content
Log in

The wave-particle duality

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The problem of wave-particle duality is considered within the framework of the algebraic approach. Contrary to the widespread belief, we demonstrate that wave-particle duality can be reconciled with the assumption that there exists some local physical reality determining the results of local measurements. A number of quantum experiments—double-slit electron scattering, Wheeler’s delayed choice experiment, the past of photons passed through the interferometer—are discussed using the concept of locality. A clear physical interpretation of these experiments that does not contradict classical concepts is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Araki, “On the algebra of all local observables,” Theor. Phys. 32(5), 844–854 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  2. R. Haag and D. Kastler, “An algebraic approach to quantum field theory,” J. Math. Phys. 5(7), 848–861 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  3. G. Emkh, Algebraic Methods in Statistical Mechanicsw and Quantum Field Theory (Wiley, New York, 1972).

    Google Scholar 

  4. S. S. Horuzhy, Introduction to Algebraic Quantum Field Theory (Kluwer, Dordrecht, 1988).

    Google Scholar 

  5. N. N. Bogoliubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Kluwer, Dordrecht, 1990).

    Book  Google Scholar 

  6. U. Bratteli and D. Robinson, Operator Algebras and Quantum Statistical Mechanics (Springer, Berlin, 1981).

    Book  Google Scholar 

  7. I. Segal, Mathematical Problems of Relativistic Physics (AMS, Providence, 1963).

    Google Scholar 

  8. D. A. Slavnov, “Measurements and mathematical formalism of quantum physics,” Phys. Part. Nucl. 38(2), 147–176 (2007).

    Article  Google Scholar 

  9. D. A. Slavnov, “The locality problem in quantum mechanics,” Phys. Part. Nucl. 41(1), 149–173 (2010).

    Article  Google Scholar 

  10. D. A. Slavnov, “Necessary and sufficient postulates of quantum mechanics,” Teor. Mat. Fiz. 142(3), 431–446 (2005).

    Article  MathSciNet  Google Scholar 

  11. D. A. Slavnov, “The possibility of reconciling quantum mechanics with classical probability theory,” Teor. Mat. Fiz. 149(3), 1690–1701 (2006).

    Article  MathSciNet  Google Scholar 

  12. D. A. Slavnov, “Locality problem in quantum theory,” Teor. Mat. Fiz. 155(2), 789–801 (2008).

    Article  MathSciNet  Google Scholar 

  13. Y. Couder and E. Fort, “Single-particle diffraction and interference at a macroscopic scale,” Phys. Rev. Lett. 97, 154101 (2006).

    Article  ADS  Google Scholar 

  14. Y. Couder, A. Boudaoud, S. Protiere, and E. Fort, “Walking droplets, a form of wave-particle duality at macroscopic scale?,” Europhys. News 41(1), 14–18 (2010).

    Article  ADS  Google Scholar 

  15. A. Tonomura, J. Endo, T. Matsuda, and T. Kawasaki, “Demonstration of single-electron buildup of an interference pattern,” Am. J. Phys. 57, 117–120 (1989).

    Article  ADS  Google Scholar 

  16. A. Tonomura, “Direct observation of thitherto unobservable quantum phenomena by using electrons,” Proc. Natl. Acad. Sci. USA 102(42), 14952–14959 (2005).

    Article  ADS  Google Scholar 

  17. U. Rudin, Functional Analysis (McGraw-Hill, Singapore, 1973).

    Google Scholar 

  18. J. Dixmier, Les C*-Algébras et Leurs Représentations (Gauthier-Villars, Paris, 1969) [in French].

    Google Scholar 

  19. A. N. Kolmogorov, Foundations of the Theory of Probability (Chelsea, New York, 1956).

    Google Scholar 

  20. J. Neveu, Mathematical Foundations of the Calculus of Probability (Holden-Day, San Francisco, 1965).

    Google Scholar 

  21. M. A. Naimark, Normed Rings (Noordhoff, Groningen, 1959).

    Google Scholar 

  22. J. S. Bell, “On the Einstein-Podolsky-Rosen Paradox,” Physics 1, 195–200 (1965).

    Google Scholar 

  23. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” in Speakable and Unspeakable in Quantum Mechanics: Collected Paper on Quantum Philosophy (Cambridge Univ. Press, Cambridge, 1993) p. 139.

    Google Scholar 

  24. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  25. S. Kochen and E. P. Specker, “The Problem of hidden variables in quantum mechanics,” J. Math. Mech. 17, 59–87 (1967).

    MathSciNet  Google Scholar 

  26. M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory (Perseus Books, Massachusetts, 1995).

    Google Scholar 

  27. R. J. Glauber, “The Quantum Theory of Optical Coherence,” Phys. Rev. 130, 2529–2539 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  28. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  29. N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Wiley, New York, 1980).

    Google Scholar 

  30. R. F. Streater and A. S. Wighteman, PCT, Spin and Statistics, and all that (Benjamin, New York, 1964).

    Google Scholar 

  31. R. Feynman, R. Leighton, and M. Sands, Feynman Lectures in Physics vol. 1, no. 3 (Addison-Wesley, Redwood City, 1964).

    Google Scholar 

  32. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, 1955).

    Google Scholar 

  33. S. Kossis et al., “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

    Article  ADS  Google Scholar 

  34. J. A. Wheeler, Mathematical Foundation of Quantum Theory (Acad. Press, New York, 1978).

    Google Scholar 

  35. V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, J. F. Roch, “Experimental realization of Wheeler’s delayed-choice gedanken experiment,” Science 315, 5814 (2007) (arXiv:quant-ph/0610241).

    Article  Google Scholar 

  36. A. C. Elitzur and L. Vaidman, “Quantum mechanical interaction-free measurements,” arXiv:hepth/9305002v2.

  37. P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).

    Article  ADS  Google Scholar 

  38. A. Danan, D. Farfurnik, S. Bar-Ad, and L. Vaidman, “Asking photons where they have been,” Phys. Rev. Lett. 111, 240402 (2013).

    Article  ADS  Google Scholar 

  39. E. Barberot, Traite Pratique de Charpente (Editions J.C. Godefroy, Paris, 1911).

    Google Scholar 

  40. R. Feynman, The Character of Physical Law (The M.I.T. Press, Massachusetts, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Slavnov.

Additional information

Original Russian Text © D.A. Slavnov, 2015, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015, Vol. 46, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slavnov, D.A. The wave-particle duality. Phys. Part. Nuclei 46, 665–677 (2015). https://doi.org/10.1134/S106377961504005X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377961504005X

Keywords

Navigation