Skip to main content
Log in

Classification of Arnold-Beltrami flows and their hidden symmetries

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

In the context of mathematical hydrodynamics, we consider the group theory structure which underlies the so named ABC flows introduced by Beltrami, Arnold and Childress. Main reference points are Arnold’s theorem stating that, for flows taking place on compact three manifolds ℳ3, the only velocity fields able to produce chaotic streamlines are those satisfying Beltrami equation and the modern topological conception of contact structures, each of which admits a representative contact one-form also satisfying Beltrami equation. We advocate that Beltrami equation is nothing else but the eigenstate equation for the first order Laplace-Beltrami operator ★ g d, which can be solved by using time-honored harmonic analysis. Taking for ℳ3, a torus T 3 constructed as ℝ3/Λ, where Λ is a crystallographic lattice, we present a general algorithm to construct solutions of the Beltrami equation which utilizes as main ingredient the orbits under the action of the point group B A of three-vectors in the momentum lattice *Λ. Inspired by the crystallographic construction of space groups, we introduce the new notion of a Universal Classifying Group \(\mathfrak{G}\mathfrak{A}_\Lambda\) which contains all space groups as proper subgroups. We show that the ★ g d eigenfunctions are naturally arranged into irreducible representations of \(\mathfrak{G}\mathfrak{A}_\Lambda\) and by means of a systematic use of the branching rules with respect to various possible subgroups \(H_i \subset \mathfrak{G}\mathfrak{A}_\Lambda\) we search and find Beltrami fields with non trivial hidden symmetries. In the case of the cubic lattice the point group is the proper octahedral group O24 and the Universal Classifying Group \(\mathfrak{G}\mathfrak{A}_{cubic}\) is a finite group G1536 of order |G1536| = 1536 which we study in full detail deriving all of its 37 irreducible representations and the associated character table. We show that the O24 orbits in the cubic lattice are arranged into 48 equivalence classes, the parameters of the corresponding Beltrami vector fields filling all the 37 irreducible representations of G1536. In this way we obtain an exhaustive classification of all generalized ABC-flows and of their hidden symmetries. We make several conceptual comments about the need of a field-theory yielding Beltrami equation as a field equation and/or an instanton equation and on the possible relation of Arnold-Beltrami flows with (supersymmetric) Chern-Simons gauge theories. We also suggest linear generalizations of Beltrami equation to higher odd-dimensions that are different from the non-linear one proposed by Arnold and possibly make contact with M-theory and the geometry of flux-compactifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, “Sur la geometrie differentielle des groupes de lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits,” Ann. Inst. Fourier. 16, 316–361 (1966).

    Article  Google Scholar 

  2. S. Childress, “Construction of steady-state hydromagnetic dynamos. I. Spatially periodic fields: Report MF-53,” Courant Inst. of Math. Sci., (1967); “New solutions of the kinematic dynamo problem,” J. Math. Phys. 11, 3063–3076 (1970).

    Google Scholar 

  3. M. Hénon, “Sur la topologie des lignes de courant dans un cas particulier,” C. R. Acad. Sci. Paris 262, 312–314 (1966).

    Google Scholar 

  4. T. Dombre, U. Frisch, J. M. E. Green, M. Henon, A. Mehr, and A. M. Soward, “Chaotic streamlines in the ABC flows,” J. Fluid Mech. 167, 353–391 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics (Springer-Verlag, 1998).

    MATH  Google Scholar 

  6. G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, 2005).

    MATH  Google Scholar 

  7. O. I. Bogoyavlenskij, “Infinite families of exact periodic solutions to the Navier-Stokes equations,” Moscow Mathematical Journal 3, 1–10 (2003); O. Bogoyavlenskij and B. Fuchssteiner, “Exact NSE solutions with crystallographic symmetries and no transfer of energy through the spectrum,” J. Geom. Phys. 54, 324–338 (2005).

    MathSciNet  Google Scholar 

  8. V. I. Arnold, “On the evolution of a magnetic field under the action of transport and diffusion,” V. I. Arnold Collected Works. Vol. II: Hydrodynamics, Bifurcation Theory, and Algebraic Geometry, 1965–1972; Eds. by A. B. Givental, B. A. Khesin, A. N. Varchenko, V. A. Vassiliev, and O. Ya. Viro, (Springer-Verlag, Berlin-Heidelberg, 2014), pp. 405–419 (Originally published in Some Problems in Modern Analysis (Izd. MGU, M., 1984), pp. 8–21 [in Russian]).

    Chapter  Google Scholar 

  9. G. E. Marsh, Force-Free Magnetic Fields: Solutions, Topology and Applications (World Scientific, Singapore, 1996).

    Book  Google Scholar 

  10. S. Childress and A. D. Gilbert, Stretch, Twist, Fold: the Fast Dynamo (Springer-Verlag, 1995).

    MATH  Google Scholar 

  11. S. E. Jones and A. D. Gilbert, “Dynamo action in the ABC flows using symmetries,” Geophys. Astrophys. Fluid Dyn. 108, 83–116 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Etnyre and R. Ghrist, “Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture,” Nonlinearity 13, 441–458 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Ghrist, “On the contact geometry and topology of ideal fluids,” Handbook of Mathematical Fluid Dynamics IV, 1–38 (2007).

    Article  MathSciNet  Google Scholar 

  14. P. G. Fré, Gravity: a Geometrical Course. Vol. I, Vol. II (Springer, 2013).

    Book  Google Scholar 

  15. H. Poincaré, “Sur les courbes definies par une equation differentielle” Oeuvres 1 (Paris, 1892); I. Bendixson, “Sur les courbes definies par des equations differentielles,” Acta Mathematica (Springer Netherlands) 24, 1–88 (1901).

    Article  Google Scholar 

  16. E. Beltrami, Opera Matematiche 4, 304 (1889).

    Google Scholar 

  17. V. Arnold, Y. Zeldovich, A. Ruzmaikin, and D. Sokolov, “Magnetic field in a stationary flow with stretching in Riemannian space,” Sov. Phys. JETP 54, 1083 (1981).

    Google Scholar 

  18. L. Castellani, R. D’Auria, and P. Fré, Supergravity and String Theory: a Geometric Perspective (World Scientific, 1990).

    Google Scholar 

  19. R. D’Auria and P. Fré, “Universal Bose-Fermi mass relations in Kaluza Klein supergravity and harmonic analysis on coset manifolds with Killing spinors,” Ann. Phys. 162, 372 (1985); R. D’Auria and P. Fré, “On the fermion mass spectrum of Kaluza-Klein supergravity,” Ann. Phys. 157, 1 (1984); D. Fabbri, P. Fré, L. Gualtieri, and P. Termonia, “M-theory on AdS4 × M111: The complete Osp(2|4) × SU(3) × SU(2) spectrum from harmonic analysis,” Nucl. Phys. B 560, 617 (1999); L. Gualtieri, “Harmonic analysis and superconformal gauge theories in three dimensions from the AdS/CFT correspondence,” arXiv:hep-th/0002116.

    Article  ADS  Google Scholar 

  20. Ed. by Th. Hahn, International Tables for Crystallography (Space-Group Symmetry, V. A, 2006).

    Google Scholar 

  21. G. James and M. Liebeck, Representations and Characters of Groups (Cambridge University Press, Cambridge Mathematical Text Books, 1993); M. Hamermesh, Group Theory and Its Applications to Physical Problems (Addison and Wesley Pub. Co., 1964).

    MATH  Google Scholar 

  22. E. S. Fyodorov, “The symmetry of regular systems of figures,” Proceedings of the Imperial St. Petersburg Mineralogical Society, 1891, Ser. 2, vol. 28, pp. 1–146.

    Google Scholar 

  23. M. I. Aroyo, Representations of Crystallographic Groups (Preprint, 2010).

    Google Scholar 

  24. B. Souvignier, Group Theory Applied to Crystallography (Preprint, 2008).

    Google Scholar 

  25. See the on-line Groupprops site managed by Vipul Naik, University of Chicago, http:groupprops.subwiki.org/wiki/Main-Page

  26. S. Coleman and J. Mandula, Phys. Rev. 159, 1251 (1967).

    Article  ADS  MATH  Google Scholar 

  27. P. Fré, L. Gualtieri, and P. Termonia, “The structure of N = 3 multiplets in AdS4 and the complete Osp(3|4) × SU(3) spectrum of M theory on AdS4 × N0, 1, 0,” Phys. Lett. B 471, 27 (1999), (arXiv:hep-th/9909188).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. D. Fabbri, P. Fré, L. Gualtieri, and P. Termonia, “Osp(N|4) supermultiplets as conformal superfields on AdS4 and the generic form of N = 2, D = 3 gauge theories,” Class. Quant. Grav. 17, 55 (2000), (arXiv:hep-th/9905134).

    Article  ADS  Google Scholar 

  29. D. Fabbri, P. Fré, L. Gualtieri, C. Reina, A. Tomasiello, A. Zaffaroni, and A. Zampa, “3-D super-conformal theories from Sasakian seven manifolds: new nontrivial evidences for AdS4/CFT3,” Nucl. Phys. B 577, 547 (2000), (arXiv:hep-th/9907219).

    Article  ADS  MATH  Google Scholar 

  30. M. Billo, D. Fabbri, P. Fré, P. Merlatti, and A. Zaffaroni, “Shadow multiplets in AdS4/CFT3 and the super-Higgs mechanism,” Nucl. Phys. B 591, 139 (2000), (arXiv:hep-th/0005220).

    Article  ADS  MATH  Google Scholar 

  31. D. Fabbri, P. Fré, L. Gualtieri, and P. Termonia, “M theory on AdS4 × M1, 1,1: The complete Osp(2|4) × SU(3) × SU(2) spectrum from harmonic analysis,” Nucl. Phys. B 560, 617 (1999), (arXiv:hep-th/9903036).

    Article  ADS  MATH  Google Scholar 

  32. P. Fré and A. S. Sorin, Supersymmetric Chern-Simons theories and Arnold-Beltrami flows (to be published).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fré.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fré, P., Sorin, A.S. Classification of Arnold-Beltrami flows and their hidden symmetries. Phys. Part. Nuclei 46, 497–632 (2015). https://doi.org/10.1134/S1063779615040036

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615040036

Keywords

Navigation