Skip to main content
Log in

On the Relationship between Thermodynamic and Dynamic Properties of Actinides and on Kinetics of Radiation Defects

  • SOLIDS IN EXTREME CONDITIONS
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The results of fundamental studies of dynamic destruction and dispersion of metals in the pulsed volumetric heating mode under the effect of penetrating radiation allowed establishing universal synergistic signs of the behavior of metals in the phenomenon of dynamic destruction. This allowed predicting the behavior of unstudied metals, including metal actinides, under extreme conditions. The establishment of general relaxation signs for nonequilibrium systems of various natures allows predicting the behavior of unstudied systems. Recent systematic studies of the properties of metallic plutonium (both domestic and foreign) allowed revealing the presence of aging processes of metallic plutonium leading to some change in its physical and mechanical properties. The intensity of these changes is fairly low, and provided that the process is stable without changing homogeneity, it will not lead to a significant change in properties in the foreseeable future. Estimates show that α and the fragmentation activity have little effect on the thermodynamic potentials (enthalpy and internal energy) of actinides at normal and elevated temperatures of T ~ 600 K. The aging processes of metal actinides associated with α and the fragmentation activity have little effect on the dynamic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. E. V. Kosheleva, V. T. Punin, N. I. Sel’chenkova, and A. Ya. Uchaev, General Regularities of Hierarchy Relaxation Processes in Metals under the Action of Penetrating Radiation Pulses (RFNC-VNIIEF, Sarov, 2015) [in Russian].

    Google Scholar 

  2. R. I. Il’kaev, V. T. Punin, A. Ya. Uchaev, S. A. Novikov, E. V. Kosheleva, L. A. Platonova, N. I. Sel’chenkova, and N. A. Yukina, Dokl. Phys. 48, 627 (2003).

    Article  ADS  Google Scholar 

  3. I. Prigogine and I. Stengers, Order out of Chaos: Man’s New Dialogue with Nature (Bantam New Age Books, 1984).

    Google Scholar 

  4. K. Wilson and J. Kogut, The Renormalization Group and the ε-Expansion, Phys. Rep. 12, 75 (1974).

    Article  ADS  Google Scholar 

  5. R. I. Il’kaev, A. Ya. Uchaev, S. A. Novikov, N. I. Zavada, L. A. Platonova, and N. I. Sel’chenkova, Dokl. Phys. 47, 341 (2002).

    Article  ADS  Google Scholar 

  6. Ye. V. Kosheleva, N. I. Selchenkova, S. S. Sokolov, I. R. Trunin, and A. Ya. Uchaev, Yad. Fiz. Inzhin. 9 (1), 81 (2018).

    Google Scholar 

  7. Ye. V. Kosheleva, N. I. Selchenkova, S. S. Sokolov, I. R. Trunin, and A. Ya. Uchaev, in Proceedings of the International Conference 21st Kharitonov Scientific Lectures on Extreme State of Matter, Detonation and Shock Waves (RFNC-VNIIEF, Sarov, 2019), p. 161.

  8. E. V. Kosheleva, N. I. Sel’chenkova, S. S. Sokolov, I. R. Trunin, and A. Ya. Uchaeva, Phys. At. Nucl. 81, 1477 (2018).

    Article  Google Scholar 

  9. Ye. V. Kosheleva, V. V. Mokhova, A. M. Podurets, V.  T.  Punin, N. I. Selchenkova, A. V. Til’kunov, M.  I.  Tkachenko, I. R. Trunin, and A. Ya. Uchaev, Combust. Explos., Shock Waves 53, 242 (2017).

    Article  Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964; Pergamon, Oxford, 1980).

  11. A. Ya. Uchaev, V. T. Punin, N. I. Selchenkova, Ye. V. Kosheleva, and V. V. Kosachev, Yad. Fiz. Inzhin. 5 (3), 203 (2014).

    Google Scholar 

  12. L. Girifalco, Statistical Mechanics of Solids (Oxford Univ. Press, New York, 2003).

    Google Scholar 

  13. L. N. Larikov and Yu. F. Yurechenko, Structure and Properties of Metals and Alloys. Thermal Properties of Metals and Alloys, Reference Book (Naukova Dumka, Kiev, 1985) [in Russian].

    Google Scholar 

  14. Thermodynamic Properties of Individual Substances, Reference Book, Ed. by L. V. Gurvich, I. V. Veitz, V. A. Medvedev, et al. (Nauka, Moscow, 1982), Vol. IV, Book 2 [in Russian].

  15. V. Golubev, Yu. S. Sobolev, and I. R. Trunin, Probl. Prochn., No. 5, 100 (1998).

  16. Plutonium Handbook A Guide to the Technology, Ed. by O. J. Wick (Gordon and Breach, New York, 1967), Vol. 1.

    Google Scholar 

  17. Plutonium. Fundamental Problems, Ed. by V. A. Nakykto and L. F. Timofeev (RFNC-VNIIEF, Sarov, 2003), Vol. 1 [in Russian].

    Google Scholar 

  18. V. Punin, N. I. Selchenkova, Ye. V. Kosheleva, L. Platonova, and L. V. Zhabyka, in Proceedings of the 7th International Workshop on Fundamental Plutonium Properties, 2007, p. 144.

  19. A. G. Seleznev and N. S. Kosulin, Radiokhimiya 37, 488 (1995).

    Google Scholar 

  20. H. Bottger, Principles of the Theory of Lattice Dynamics (VCH, Weinheim, 1983).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Uchaev.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosheleva, E.V., Sel’chenkova, N.I. & Uchaev, A.Y. On the Relationship between Thermodynamic and Dynamic Properties of Actinides and on Kinetics of Radiation Defects. Phys. Atom. Nuclei 84, 2022–2033 (2021). https://doi.org/10.1134/S1063778821090222

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821090222

Keywords:

Navigation