Skip to main content
Log in

A Methodology for Determining the Transmutation Efficiency of Minor Actinides

  • TECHNOLOGY OF NUCLEAR MATERIALS
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The long-lived minor actinides (MA); americium, neptunium, and curium are main contributors to the long-term radiotoxicity of used fuel. Thus, the transmutation of these MAs is considered as an alternative to direct burial. Until now, no unambiguous internationally recognized quantitative criterion for the effectiveness of MA transmutation has been developed, although this would be highly desirable. The absolute and relative decrease in the total mass of MA is completely inadequate, since they ignore the accumulation of higher radiotoxic MA from the transmuted nuclide. In this paper, we propose a new criterion for the efficiency of MA transmutation in nuclear reactors and demonstrate its efficiency when comparing two molten salt reactors; Single-fluid Double-zone Thorium-based Molten Salt Reactor (SD-TMSR) and Small Molten Salt Fast Reactor (SMSFR). In addition, the proposed criterion takes into account the mass of all useful MA, short-lived MA, and short-lived fission products (FPs). We present a new approach to loading MA in SD-TMSR and SMSFR. The total change in the mass of actinides and FPs during irradiation was calculated using SERPENT-2 Monte Carlo code. The results show that the transmutation efficiency of 241Am (a major candidate for transmutation) in SD-TMSR is much higher than in SMSFR. After 1500 days of irradiation, the transmutation efficiency reaches 82.6% for SD-TMSR, but for SMSFR it reaches 52.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. Liu, R. Jia, R. Han, X. Lyu, J. Han, and W. Li, Ann. Nucl. Energy 115, 116 (2018). https://doi.org/10.1016/j.anucene.2018.01.031

    Article  Google Scholar 

  2. K. H. Biss and B. Thomauske, Ann. Nucl. Energy 83, 25 (2018). https://doi.org/10.1016/j.anucene.2015.03.042

    Article  Google Scholar 

  3. C. Yu, X. Li, X. Cai, C. Zou, Y. Ma, J. Han, and J. Chen, Ann. Nucl. Energy 85, 597 (2015). https://doi.org/10.1016/j.anucene.2015.06.014

    Article  Google Scholar 

  4. DOE US Tech. Rep. (2002), p. 48.

  5. M. Rosenthal, P. Kasten, and R. Briggs, Nucl. Appl. Technol. 8, 107 (1970). https://doi.org/10.13182/NT70-A28619

    Article  Google Scholar 

  6. O. Ashraf and G. Tikhomirov, Ann. Nucl. Energy 148, 107751 (2020). https://doi.org/10.1016/j.anucene.2020.107751

    Article  Google Scholar 

  7. V. Ignatiev, O. Feynberg, I. Gnidoi, A. Merzlyakov, A.  Surenkov, V. Uglov, A. Zagnitko, V. Subbotin, I. Sannikov, A. Toropov, et al., Ann. Nucl. Energy 64, 408 (2014). https://doi.org/10.1016/j.anucene.2013.09.004

    Article  Google Scholar 

  8. N. Rabotnov, Tech. Rep. (2002).

  9. G. C. Li, P. Cong, C. G. Yu, Y. Zou, J. Y. Sun, J. G. Chen, and H. J. Xu, Prog. Nucl. Energy 108, 144 (2018). https://doi.org/10.1016/j.pnucene.2018.04.017

    Article  Google Scholar 

  10. O. Ashraf, A. Rykhlevskii, G. V. Tikhomirov, and K. D. Huff, Ann. Nucl. Energy 137, 107115 (2020). https://doi.org/10.1016/j.anucene.2019.107115

    Article  Google Scholar 

  11. C. Fiorina, M. Aufiero, A. Cammi, F. Franceschini, J. Krepel, L. Luzzi, K. Mikityuk, and M. E. Ricotti, Prog. Nucl. Energy 68, 153 (2013). https://doi.org/10.1016/j.pnucene.2013.06.006

    Article  Google Scholar 

  12. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, and T. Kaltiaisenaho, Ann. Nucl. Energy 82, 140 (2015). https://doi.org/10.1016/j.anucene.2014.08.024

    Article  Google Scholar 

Download references

Funding

The work was funded by the Program “Priority-2030” for National Research Nuclear University MEPhI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ashraf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, O., Tikhomirov, G.V. A Methodology for Determining the Transmutation Efficiency of Minor Actinides. Phys. Atom. Nuclei 84, 1550–1554 (2021). https://doi.org/10.1134/S1063778821090040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821090040

Keywords:

Navigation