Skip to main content
Log in

Discharge Chamber Plasma-Chemical Conditioning in Magnetic Confinement Fusion Devices (Review)

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Plasma-chemical deposition of a protective coating on the first wall of a fusion device using a chemically active gas (precursor) remains to date one of the primary ways to protect the plasma against cooling impurities. This method has proved effective and does not require the use of additional and expensive equipment. The process in which a boron-containing gas is used as a precursor is referred to as boronization. This paper considers various aspects of using carborane for boronization, including the structure and properties of resultant boron-carbon films; results of boronization for different fusion devices and different precursors; effect of boronization on working plasma pulses; boronization in a low-temperature glow discharge plasma as compared to that in a high-temperature plasma of fusion devices at working pulses with ohmic, ECR, and ICR plasma heating; and the possibility of using boronization during operation of fusion devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Plasma Diagnostic Techniques, Ed. by R. H. Huddlestone and S. L. Leonard (Academic, New York, 1965).

    Google Scholar 

  2. J. Winter, F. Waelbroeck, P. Wienhold, et al., J. Nucl. Mater. 122–123, 1187 (1984).

    Article  ADS  Google Scholar 

  3. S. A. Grashin, G. E. Notkin, Yu. A. Sokolov, et al., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez, No. 2, 68 (1988).

    Google Scholar 

  4. V. M. Chicherov, Yu. V. Esipchuk, S. A. Grashin, et al., J. Nucl. Mater. 162–164, 737 (1989).

    Article  ADS  Google Scholar 

  5. N. P. Busharov, V. M. Gusev, and M. I. Guseva, Sov. At. Energy 42, 554 (1977).

    Article  Google Scholar 

  6. O. I. Buzhinskij and Yu. M. Semenets, Fusion Eng. Des. 45, 343 (1999).

    Article  Google Scholar 

  7. S. Veprek, M. R. Hague, and H. R. Oswald, J. Nucl. Mater. 63, 405 (1976).

    Article  ADS  Google Scholar 

  8. J. Winter, H. G. Esser, L. Könen, et al., J. Nucl. Mater. 162–164, 713 (1989).

    Article  ADS  Google Scholar 

  9. U. Schneider, W. Paschenreider, M. Bessenrodt, et al., J. Nucl. Mater. 176–177, 350 (1990).

    Google Scholar 

  10. Ch. Hollenstein and B. P. Duval, J. Nucl. Mater. 176–177, 343 (1990).

    Article  ADS  Google Scholar 

  11. H. F. Dylla, M. G. Bell, R. J. Hawryluk, et al., J. Nucl. Mater. 176–177, 337 (1990).

    Article  ADS  Google Scholar 

  12. J. Winter, H. G. Esser, H. Reimer, et al., J. Nucl. Mater. 176–177, 486 (1990).

    Article  ADS  Google Scholar 

  13. H. G. Esser, S. J. Fielding, S. D. Hanks, et al., J. Nucl. Mater. 186, 217 (1992).

    Article  ADS  Google Scholar 

  14. R. Grimes, Carboranes (Elsevier, Amsterdam, 2016).

    Google Scholar 

  15. E. F. Westrum, Jr. and S. Henriquez, Mol. Cryst. Liq. Cryst. 32, 31 (1976).

    Article  Google Scholar 

  16. A. I. Kanaev, V. M. Sharapov, A. P. Zakharov, et al., Rep. Acad. Sci. USSR. Seriya: Tekh. Fiz. 318, 342 (1991).

    Google Scholar 

  17. V. M. Sharapov, A. I. Kanaev, A. P. Zakharov, and A.  E. Gorodetsky, J. Nucl. Mater. 191–194, 508 (1992).

    Article  ADS  Google Scholar 

  18. A. P. Zakharov, A. I. Kanaev, V. M. Sharapov, and A.  E. Gorodetsky, Le Vide, les Couches Minces, No. 261, 103 (1992).

  19. V. Kh. Alimov, D. B. Bogomolov, M. N. Churaeva, et al., J. Nucl. Mater. 196–198, 670 (1992).

    Article  ADS  Google Scholar 

  20. R. K. Zalavutdinov, A. E. Gorodetsky, and A. P. Zakharov, Microchim. Acta 114–115, 533 (1994).

    Article  Google Scholar 

  21. Boron: Receiving, Structure, Properties, Proceedings of the Symposium, Ed. by F. N. Tavadze (Metsniereba, Tbilisi, 1974).

    Google Scholar 

  22. V. M. Sharapov, A. I. Kanaev, S. Yu. Rybakov, and L. E. Gavrilov, J. Nucl. Mater. 220–222, 930 (1995).

    Article  ADS  Google Scholar 

  23. S. Veprek, S. Rambert, M. Heitze, et al., J. Nucl. Mater. 162–164, 724 (1989).

    Article  ADS  Google Scholar 

  24. V. M. Sharapov, A. I. Kanaev, S. Yu. Rybakov, and L. E. Gavrilov, Russ. J. Phys. Chem. A 70, 136 (1996).

    Google Scholar 

  25. O. I. Buzhinsky, T-11M Team, A. I. Kanaev, IPC RAS Team, A. A. Vasilyev, and T-3M Team, J. Nucl. Mater. 191–194, 1413 (1992).

    Article  ADS  Google Scholar 

  26. S. A. Grashin, V. F. Bogdanov, N. L. Vasin, et al., in Proceedings of the 20th European Conference on Controlled Fusion and Plasma Physics, Lisboa, 1993, Vol. 17C, Part 1, p. 331.

  27. L. G. Askinazi, V. E. Golant, A. I. Kanaev, et al., in Proceedings of the 20th European Conference on Controlled Fusion and Plasma Physics, Lisboa, 1993, Part IV, p. 1509.

  28. V. M. Sharapov, S. V. Mirnov, S. A. Grashin, et al., J. Nucl. Mater. 220–222, 730 (1995).

    Article  ADS  Google Scholar 

  29. V. K. Gusev, S. V. Aleksandrov, T. A. Burtseva, et al., in Proceedings of the 18th IAEA Fusion Energy Conference, Sorrento, Italy, October 4–10, 2000, IAEA-CN-77/EXP1/03.

  30. V. K. Gusev, T. A. Burtseva, A. V. Dech, et al., Nucl. Fusion 41, 919 (2001).

    Article  ADS  Google Scholar 

  31. A. I. Meshcheryakov, O. I. Fedyanin, D. K. Akulina, M. S. Berezhetskii, G. S. Voronov, G. A. Gladkov, S. E. Grebenshchikov, V. A. Grinchuk, I. A. Grishina, L. V. Kolik, N. F. Larionova, A. A. Letunov, V. P. Logvinenko, A. E. Petrov, A. A. Pshenichnikov, et al., in Proceedings of the 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, July 7–11, 2003, ECA, Vol. 27A, P-4.4.

  32. A. I. Meshcheryakov, D. K. Akulina, G. M. Batanov, et al., Plasma Phys. Rep. 31, 452 (2005).

    Article  ADS  Google Scholar 

  33. S. Yu. Rybakov, V. M. Sharapov, and L. E. Gavrilov, J. Phys. IV 5, C5-921 (1995).

    Google Scholar 

  34. V. M. Sharapov, S. Yu. Rybakov, L. E. Gavrilov, and A. I. Kanaev, Russ. J. Phys. Chem. A 71, 1946 (1997).

    Google Scholar 

  35. A. Refke, V. Philipps, E. Vietzke, et al., J. Nucl. Mater. 212–215, 1255 (1994).

    Article  ADS  Google Scholar 

  36. R. Zehringer, H. Künzli, P. Oelhafen, and C. Hollenstein, J. Nucl. Mater. 176–177, 370 (1990).

    Article  ADS  Google Scholar 

  37. R. E. Woodley, Carbon 7, 609 (1969).

    Article  Google Scholar 

  38. L. M. Litz and R. A. Mercuri, J. Electrochem. Soc. 110, 921 (1963).

    Article  ADS  Google Scholar 

  39. A. I. Meshcheryakov, V. M. Sharapov, V. P. Logvinenko, and A. A. Letunov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez, No. 2, 109 (2012).

    Google Scholar 

  40. H. G. Esser, J. Winter, V. Philipps, et al., J. Nucl. Mater. 212–215, 1546 (1994).

    Article  ADS  Google Scholar 

  41. O. Buzhinskij, V. Otroschenko, and V. Barsuk, J. Nucl. Mater. 390–391, 996 (2009).

    Article  ADS  Google Scholar 

  42. A. I. Meshcheryakov, M. S. Berezhetskii, V. P. Logvinenko, et al., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez, No. 2, 65 (2011).

    Google Scholar 

  43. A. I. Meshcheryakov, V. M. Sharapov, I. A. Grishina, et al., Usp. Prikl. Fiz. 4, 248 (2016).

    Google Scholar 

  44. J. Li, Y. P. Zhao, X. M. Gu, et al., Nucl. Fusion 39, 973 (1999).

    Article  ADS  Google Scholar 

  45. O. I. Buzhinskij, V. G. Otroshchenko, D. G. Whyte, et al., J. Nucl. Mater. 313–316, 214 (2003).

    Article  ADS  Google Scholar 

  46. A. V. Vertkov and I. E. Lyublinskii, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 40 (3), 5 (2017).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

It is my pleasure to thank S.V. Mirnov, active initiator of boronization of domestic fusion facilities, for discussion and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Sharapov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharapov, V.M. Discharge Chamber Plasma-Chemical Conditioning in Magnetic Confinement Fusion Devices (Review). Phys. Atom. Nuclei 84, 1266–1271 (2021). https://doi.org/10.1134/S1063778821070139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821070139

Keywords:

Navigation