Skip to main content
Log in

A Study of the Ionization Efficiency for Nuclear Recoils in Pure Crystals

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We present a study of the ionization efficiency in pure materials based on an extension of Lindhard’s original theory, in which the energy given to atomic motion by nuclear recoils is calculated taking into account a nonzero constant binding energy. We construct a modified integral equation that incorporates this effect consistently and find a numerical solution to this equation that leads to a ‘‘quenching factor’’ (QF) which is in good agreement with the available experimental measurements for Si and Ge. We argue that the model is a good approximation for Ge even for energies close to the true cutoff, while for Si is valid up to recoil energies greater than 500 eV. We also describe recent studies aimed at further extending the calculation of the QF for Si to even lower energies, relevant for current and future direct dark matter searches and the detection of coherent elastic scattering of neutrinos off nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. J. Lindhard, V. Nielsen, M. Scharff, and P. V. Thomsen, Kong. Dan. Vid. Selsk. Mat. Fys. Med. 33 (10) (1963).

  2. A. E. Chavarria, J. I. Collar, J. R. Pea, P. Privitera, A. E. Robinson, B. Scholz, C. Sengul, J. Zhou, J. Estrada, F. Izraelevitch, J. Tiffenberg, J. R. T. de Mello Neto, and D. Torres Machado, Phys. Rev. D 94, 082007 (2016).

    Article  ADS  Google Scholar 

  3. Y. Sarkis, Alexis Aguilar-Arevalo, and Juan Carlos D’Olivo, Phys. Rev. D 101, 102001 (2020).

    Article  ADS  Google Scholar 

  4. N. Castell-Mor (DAMIC-M Collab.), Nucl. Instrum. Methods A 958, 162933 (2020).

    Article  Google Scholar 

  5. Alexis Aguilar-Arevalo et al., Phys. Rev. D 100, 092005 (2019).

    Article  ADS  Google Scholar 

  6. J. Sanders K. Winterbon, and P. Sigmund, Kong. Dan. Vid. Selsk. Mat. Fys. Med. 37 (14) (1970).

  7. P. Sorensen, Phys. Rev. D 91, 083509 (2015).

    Article  ADS  Google Scholar 

  8. J. Frenkel, Z. Phys. 35, 652 (1926).

    Article  ADS  Google Scholar 

  9. I. S. Tilinin, Zh. Eksp. Teor. Fiz. 94, 96 (1988).

    Google Scholar 

  10. L. M Kishinevsky, Izv. Akad. Nauk SSSR 26, 1410 (1962).

    Google Scholar 

  11. Jos M. Fernndez-Varea and N. R. Arista, Radiat. Phys. Chem. 96, 88 (2014).

    Article  ADS  Google Scholar 

  12. W. D. Wilson, L. G. Haggmark, and J. P. Biersack, Phys. Rev. B 15, 2458 (1977).

    Article  ADS  Google Scholar 

  13. U. Fano and W. Lichten, Phys. Rev. Lett. 14, 627 (1965).

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported in part by DGAPA-UNAM grant numbers PAPIIT-IN108917, PAPIIT-IT100420, and Consejo Nacional de Ciencia y Tecnología (CONACYT) through grant no. CB2014/240666.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sarkis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkis, Y., Aguilar-Arevalo, A. & D’Olivo, J.C. A Study of the Ionization Efficiency for Nuclear Recoils in Pure Crystals. Phys. Atom. Nuclei 84, 590–594 (2021). https://doi.org/10.1134/S1063778821040268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821040268

Navigation