Skip to main content
Log in

CP-Violation in Oscillations of Three Neutrino Generations: the Case of Degenerate Masses

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

CP-symmetry violates in oscillations of neutrinos in vacuum in presence of three generations. In this case there is an inherent complex phase in PMNS-matrix. When any two neutrino masses degenerate the CP-violation vanishes. In the present article different mechanisms of CP-symmetry recovery are demonstrated in case of two degenerate neutrino mass-states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the work the summation is written exlpicetly.

REFERENCES

  1. M. Kobayashi and T. Maskawa, Prog, Theor. Exp. Phys. 49, 652 (1973).

    Google Scholar 

  2. M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update.

  3. Carlo Giunti and Chung W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press, 2007).

    Google Scholar 

  4. C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).

    Article  ADS  Google Scholar 

  5. V. A. Rubakov and M. E. Shaposhnikov, Phys. Usp. 39, 461 (1996).

    Article  ADS  Google Scholar 

  6. C. Giunti and C. W. Kim, Phys. Rev. D 58, 017301 (1998).

    Article  ADS  Google Scholar 

  7. S. De Leo, G. Ducati, and P. Rotelli, Mod. Phys. Lett. A 15, 2057 (2000).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks his scientific advisor, M.I. Vysotsky for the formulation of the problem and fruitful discussions, and S.I. Godunov for the discussions and constructive criticism during the work on the article.

Funding

This work was supported by the Russian Science Foundation, grant no. 19-12-00123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Karkaryan.

Appendices

Appendix A

The derivation of the expression for the probability of neutrino oscillations in case of three neutrino generations is based on the work [2]. Let at the initial moment of time there is a neutrino with flavor \(\alpha\) and momentum \(p\). The propagation of the neutrino mass state in time and space in the context of the considering problem may be decribed by a plane wave: \(|\nu_{k}(t,x)\rangle=e^{-iE_{k}t+ip_{k}x}|\nu_{k}\rangle\), where \(k=1,2,3\), \(E_{k}=\sqrt{p^{2}_{k}+m^{2}_{k}}\). Knowing the mixing matrix we can write for the evolution of the flavour stateFootnote 1 :

$$|\nu_{\alpha}(t,x)\rangle=\sum_{k}U_{\alpha k}|\nu_{k}(t,x)\rangle$$
$${}=\sum_{k}U_{\alpha k}e^{-iE_{k}t+ip_{k}x}|\nu_{k}\rangle,\quad\alpha=e,\mu,\tau.$$
(A.1)

Since we consider the neutrino to have a definite momentum, \(p_{i}=p\) for \(i=1,2,3\). There is an opportunity to choose the other initial condition, namely the birth of neutrino with the definite energy \(E\). However in the ultrarelativistic limit the both choices lead to the same result [7]. We get the amplitude of the oscillations:

$$A_{\nu_{\alpha}\rightarrow{\nu_{\beta}}}=\langle\nu_{\beta}|\nu_{\alpha}(t,x)\rangle$$
$${}=\sum_{k}U_{\alpha k}U^{*}_{\beta k}e^{-iE_{k}t+ipx}.$$
(A.2)

Then the probability of oscillations is equal:

$$P_{\nu_{\alpha}\rightarrow{\nu_{\beta}}}=|A_{\nu_{\alpha}\rightarrow{\nu_{\beta}}}|^{2}$$
$${}=\sum_{k,j}U_{\alpha k}U^{*}_{\beta k}U^{*}_{\alpha j}U_{\beta j}e^{-i(E_{k}-E_{j})t}.$$
(A.3)

Considering the neutrino ultrarelativistic, i.e. \(m\ll p\), we obtain

$$(E_{k}-E_{j})t$$
$${}=\left(\sqrt{p^{2}+m^{2}_{k}}-\sqrt{p^{2}+m^{2}_{j}}\right)t$$
$${}\approx\left(p\left(1+\frac{m^{2}_{k}}{2p^{2}}\right)-p\left(1+\frac{m^{2}_{j}}{2p^{2}}\right)\right)t$$
$${}=\frac{\Delta m^{2}_{kj}}{2p}t\approx\frac{\Delta m^{2}_{kj}}{2E}L,$$
(A.4)

where \(\Delta m^{2}_{kj}\equiv m^{2}_{k}-m^{2}_{j}\) and it is used, that in the ultrarelativistic case \(E\simeq p\), \(t\simeq L\).

Let us separate explicetly the constant term from from the oscillating term in the expression (A.3):

$$\sum_{k,j}U_{\alpha k}U^{*}_{\beta k}U^{*}_{\alpha j}U_{\beta j}e^{-i(E_{k}-E_{j})t}$$
$${}=\sum_{k}|U_{\alpha k}|^{2}|U_{\beta k}|^{2}$$
$${}+2\sum_{k>j}\textrm{Re}\{U_{\alpha k}U^{*}_{\beta k}U^{*}_{\alpha j}U_{\beta j}e^{-i\frac{\Delta m^{2}_{kj}}{2E}}L\},$$
(A.5)

where we used (A.4), and in the first term for \(k=j\) we have \(e^{-i(E_{k}-E_{j})t}=1\). By unitarity of the PMNS-matrix \(\sum_{k}U_{\alpha k}U^{*}_{\beta k}=\sum_{j}U^{*}_{\alpha j}U_{\beta j}=\delta_{\alpha\beta}\), we obtain

$$\delta_{\alpha\beta}\cdot\delta_{\alpha\beta}=\left(\sum_{k}U_{\alpha k}U^{*}_{\beta k}\right)$$
$${}\times\left(\sum_{j}U^{*}_{\alpha j}U_{\beta j}\right)=\sum_{k,j}U_{\alpha k}U^{*}_{\beta k}U^{*}_{\alpha j}U_{\beta j}$$
$${}=\sum_{k=j}U_{\alpha k}U^{*}_{\alpha j}U^{*}_{\beta k}U_{\beta j}+\sum_{k\neq j}U_{\alpha k}U^{*}_{\beta k}U^{*}_{\alpha j}U_{\beta j}$$
$${}=\sum_{k}|U_{\alpha k}|^{2}|U_{\beta k}|^{2}+\sum_{k>j}U_{\alpha k}U^{*}_{\beta k}U^{*}_{\alpha j}U_{\beta j}$$
$${}+\sum_{k>j}U_{\alpha j}U^{*}_{\beta j}U^{*}_{\alpha k}U_{\beta k}=\sum_{k}|U_{\alpha k}|^{2}|U_{\beta k}|^{2}$$
$${}+\sum_{k>j}U_{\alpha k}U^{*}_{\beta k}U^{*}_{\alpha j}U_{\beta j}+\sum_{k>j}(U_{\alpha k}U^{*}_{\beta k}U^{*}_{\alpha j}U_{\beta j})^{*}$$
$${}=\sum_{k}|U_{\alpha k}|^{2}|U_{\beta k}|^{2}+2\sum_{k>j}\textrm{Re}\{U_{\alpha k}U^{*}_{\beta k}U^{*}_{\alpha j}U_{\beta j}\}$$
$${}=\delta_{\alpha\beta}.$$
(A.6)

Dividing the exponent (A.5) into the real and imaginary parts, eventually we get:

$$P_{\nu_{\alpha}\rightarrow{\nu_{\beta}}}=\delta_{\alpha\beta}$$
$${}-2\sum_{k>j}\textrm{Re}\{U_{\alpha k}U^{*}_{\beta k}U^{*}_{\alpha j}U_{\beta j}\}$$
$${}\times\left(1-\cos{\frac{\Delta m^{2}_{kj}}{2E}}L\right)$$
$${}-2\sum_{k>j}\textrm{Im}\{U_{\alpha k}U^{*}_{\beta k}U^{*}_{\alpha j}U_{\beta j}\}\sin{\frac{\Delta m^{2}_{kj}}{2E}L}$$
$${}=\delta_{\alpha\beta}-4\sum_{k>j}\textrm{Re}\{U_{\alpha k}U^{*}_{\beta k}U^{*}_{\alpha j}U_{\beta j}\}\sin^{2}{\frac{\Delta m^{2}_{kj}}{4E}L}$$
$${}-2\sum_{k>j}\textrm{Im}\{U_{\alpha k}U^{*}_{\beta k}U^{*}_{\alpha j}U_{\beta j}\}\sin{\frac{\Delta m^{2}_{kj}}{2E}L}.$$
(A.7)

Appendix B

Let us obtain the explicit form of the expression (5) for the oscillations \(\nu_{e}\rightarrow\nu_{\mu}\):

$$\Delta P_{\nu_{e}\rightarrow\nu_{\mu}}$$
$${}=4\textrm{Im}\{U^{*}_{\mu 2}U_{e2}U_{\mu 1}U^{*}_{e1}\}\sin{\frac{\Delta m^{2}_{21}}{2E}L}$$
$${}+4\textrm{Im}\{U^{*}_{\mu 3}U_{e3}U_{\mu 1}U^{*}_{e1}\}\sin{\frac{\Delta m^{2}_{31}}{2E}L}$$
$${}+4\textrm{Im}\{U^{*}_{\mu 3}U_{e3}U_{\mu 2}U^{*}_{e2}\}\sin{\frac{\Delta m^{2}_{32}}{2E}L}.$$
(B.1)

We write down the elements attached to the each \(\sin{\frac{\Delta m^{2}_{kj}}{2E}L}\):

$$\Delta m^{2}_{21}:U^{*}_{\mu 2}U_{e2}U_{\mu 1}U^{*}_{e1}$$
$${}=(c_{12}c_{23}-s_{12}s_{23}s_{13}e^{-i\delta})$$
$${}\times s_{12}c_{13}(-s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta})c_{12}c_{13}$$
$${}=(-c_{12}c^{2}_{23}s_{12}-c^{2}_{12}c_{23}s_{23}s_{13}e^{i\delta}$$
$${}+s^{2}_{12}c_{23}s_{23}s_{13}e^{-i\delta}+s_{12}c_{12}s^{2}_{23}s^{2}_{13})$$
$${}=c_{12}c^{2}_{13}s_{12}(c_{23}s_{23}s_{13}(s^{2}_{12}e^{-i\delta}-c^{2}_{12}e^{i\delta})$$
$${}+s_{12}c_{12}((s_{23}s_{13})^{2}-c^{2}_{23}))$$
$${}\Longrightarrow\textrm{Im}\{U^{*}_{\mu 2}U_{e2}U_{\mu 1}U^{*}_{e1}\}$$
$${}=-c^{2}_{13}c_{12}c_{23}s_{13}s_{12}s_{23}\sin{\delta};$$
(B.2)
$$\Delta m^{2}_{31}:U^{*}_{\mu 3}U_{e3}U_{\mu 1}U^{*}_{e1}$$
$${}=s_{23}c_{13}s_{13}e^{-i\delta}(-s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta})c_{12}c_{13}$$
$${}=c^{2}_{13}c_{12}s_{23}s_{13}(-s_{12}c_{23}e^{-i\delta}-c_{12}s_{23}s_{13})$$
$${}\Longrightarrow\textrm{Im}\{U^{*}_{\mu 3}U_{e3}U_{\mu 1}U^{*}_{e1}\}$$
$${}=c^{2}_{13}c_{12}c_{23}s_{13}s_{12}s_{23}\sin{\delta};$$
(B.3)
$$\Delta m^{2}_{32}:U^{*}_{\mu 3}U_{e3}U_{\mu 2}U^{*}_{e2}$$
$${}=s_{23}c_{13}s_{13}e^{-i\delta}(c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta})s_{12}c_{13}$$
$${}=s_{23}c^{2}_{13}s_{13}s_{12}(c_{12}c_{23}e^{-i\delta}-s_{12}s_{23}s_{13})$$
$${}\Longrightarrow\textrm{Im}\{U^{*}_{\mu 3}U_{e3}U_{\mu 2}U^{*}_{e2}\}$$
$${}=-c^{2}_{13}c_{12}c_{23}s_{13}s_{12}s_{23}\sin{\delta}.$$
(B.4)

Finally we obtain for the conversion \(\nu_{e}\) in \(\nu_{\mu}\):

$$\Delta P_{\nu_{e}\rightarrow\nu_{\mu}}$$
$${}=4c_{12}c^{2}_{13}c_{23}s_{13}s_{23}s_{12}\bigg{(}\sin{\frac{\Delta m^{2}_{31}}{2E}L}$$
$${}-\sin{\frac{\Delta m^{2}_{21}}{2E}L}-\sin{\frac{\Delta m^{2}_{32}}{2E}L}\bigg{)}\sin{\delta}.$$
(B.5)

Appendix C

We will show that an arbitrary unitary \(3\times 3\)-matrix of mixing can be made real when two neutrino mass states are degenerate. For this, we will consider its expansion to the matrices \(W_{ij}\): \(U=W_{12}W_{23}W_{13}\). The order of the product may be chosen arbitrary as in the section 3.1. The matrices \(W_{ij}\) may be parametrized with one real angle and three complex phases. Let us take for example \(W_{12}(\theta_{12},\phi_{1},\psi,\delta)\):

$$W_{12}$$
$${}=e^{i\phi_{1}/2}\begin{pmatrix}e^{i\psi}\cos{\theta_{12}}&e^{i\delta}\sin{\theta_{12}}&0\\ -e^{-i\delta}\sin{\theta_{12}}&e^{-i\psi}\cos{\theta_{12}}&0\\ 0&0&1\end{pmatrix}.$$
(C.1)

Defining \(\psi=\psi_{1}+\delta_{1}\), \(\delta=\psi_{1}-\delta_{1}\), let us write the matrix \(W_{12}(\theta_{12},\phi_{1},\psi,\delta)=W_{12}(\theta_{12},\phi_{1},\psi_{1},\delta_{1})\) in the following way:

$$W_{12}=e^{i\phi_{1}/2}\begin{pmatrix}e^{i\psi_{1}}&0&0\\ 0&e^{-i\psi_{1}}&0\\ 0&0&1\end{pmatrix}$$
$${}\times\begin{pmatrix}\cos{\theta_{12}}&\sin{\theta_{12}}&0\\ -\sin{\theta_{12}}&\cos{\theta_{12}}&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}e^{i\delta_{1}}&0&0\\ 0&e^{-i\delta_{1}}&0\\ 0&0&1\end{pmatrix}.$$
(C.2)

Thus, we have separated two phase matrices and one rotation matrix around the third axis. Parametrization of matrices \(W_{23}(\theta_{23},\phi_{2},\psi_{2},\delta_{2})\), \(W_{13}(\theta_{13},\phi_{3},\psi_{3},\delta_{3})\) is carried out in a similar way. As it was mentioned, the unitary matrix \(3\times 3\) has three independent phases and three independent angles. In our expansion of the matrix \(U\) there are nine phases and three angles. Hence we conclude that three phases are arbitrary. We substitue (C.2) into the initial expansion of the matrix \(U\), denoting the rotation matrices \(\theta_{12},\theta_{23},\theta_{13}\) as \(R_{12}\), \(R_{23}\), \(R_{13}\) respectively:

$$U=e^{i(\phi_{1}/2+\phi_{2}/2+\phi_{3}/2)}\begin{pmatrix}e^{i\psi_{1}}&0&0\\ 0&e^{-i\psi_{1}}&0\\ 0&0&1\end{pmatrix}$$
$${}\times R_{12}\begin{pmatrix}e^{i\delta_{1}}&0&0\\ 0&e^{-i\delta_{1}}&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&e^{i\psi_{2}}&0\\ 0&0&e^{-i\psi_{2}}\end{pmatrix}$$
$${}\times R_{23}\begin{pmatrix}1&0&0\\ 0&e^{i\delta_{2}}&0\\ 0&0&e^{-i\delta_{2}}\end{pmatrix}\begin{pmatrix}e^{i\psi_{3}}&0&0\\ 0&1&0\\ 0&0&e^{-i\psi_{3}}\end{pmatrix}$$
$${}\times R_{13}\begin{pmatrix}e^{i\delta_{3}}&0&0\\ 0&1&0\\ 0&0&e^{-i\delta_{3}}\end{pmatrix}.$$
(C.3)

Let us assume \(\psi_{2}=\delta_{1}=\delta_{2}=0\) and define \(\Delta_{1}=\psi_{3}+\delta_{3}\), \(\Delta_{2}=\psi_{3}-\delta_{3}\). Then for the matrix \(U\) we have:

$$U=e^{i(\phi_{1}/2+\phi_{2}/2)}\begin{pmatrix}e^{i\psi_{1}}&0&0\\ 0&e^{-i\psi_{1}}&0\\ 0&0&1\end{pmatrix}R_{12}$$
$${}\times R_{23}e^{i\phi_{3}/2}\begin{pmatrix}e^{i\Delta_{1}}\cos{\theta_{13}}&0&e^{i\Delta_{2}}\sin{\theta_{13}}\\ 0&1&0\\ -e^{-i\Delta_{2}}\sin{\theta_{13}}&0&e^{-i\Delta_{1}}\cos{\theta_{13}}\end{pmatrix}$$
$${}=e^{i(\phi_{1}/2+\phi_{2}/2)}\begin{pmatrix}e^{i\psi_{1}}&0&0\\ 0&e^{-i\psi_{1}}&0\\ 0&0&1\end{pmatrix}$$
$${}\times R_{12}R_{23}W_{13}(\theta_{13},\phi_{3},\Delta_{1},\Delta_{2}).$$
(C.4)

Let us assume that \(m1=m3\); that is, the \(|\nu_{1}\rangle\) and \(|\nu_{3}\rangle\) states are degenerate. In just the same way as in Subsection 3.1, \(U\)(2) symmetry then appears. We now rotate the neutrino fields by means of a matrix \(V_{13}\) such that \(V^{\dagger}_{13}=W_{13}\). Considering that the rotations of charged-lepton fields eliminate the phases remaining on the left in the matrix \(U\), we ultimately arrive at \(U=R_{12}R_{23}\). Thus, the mixing matrix became real, so that there is no \(CP\) violation. Obviously, this argument is valid in the case of degeneracy of any two neutrino states.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkaryan, E.K. CP-Violation in Oscillations of Three Neutrino Generations: the Case of Degenerate Masses. Phys. Atom. Nuclei 84, 150–157 (2021). https://doi.org/10.1134/S1063778821020095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821020095

Navigation