Skip to main content
Log in

Mechanisms of Modulation Formation in Elastic Diffraction Scattering of Charged Particles

  • INTERACTION OF PLASMA, PARTICLE BEAMS, AND RADIATION WITH MATTER
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

In this work, the authors describe experimental data on the angular distributions of alpha particles on light alpha-cluster nuclei. The angular distributions of elastic scattering of alpha particles are analyzed under the assumption of complete absorption inside the sphere of the cluster structure and the sphere of the interaction core. These assumptions made it possible to decompose the scattering amplitude into components—scattering on the nucleus itself and on different cluster structures. The calculations result in the following. The amplitude for describing diffraction elastic scattering by 4n ± 1 light nuclei in the framework of the theory of diffraction scattering is a superposition of wave functions in the scattering approximation on a completely black core and on its absolutely black substructures. The nucleon association modes, as well as the scattering modes on the correlated motion of nucleons and spatially separated nucleons, make a significant contribution to the total scattering amplitude. This manifests itself as an increase in angular distributions due to the interference of modes of various cluster structures and nucleons. Owing to these effects, not only an uneven rise in the angular distributions of differential cross sections over the Rutherford section is possible, but also a rise at rear angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. O. F. Nemets, V. G. Neudachin, A. T. Rudchik, et al., Nucleon Clustering in Nuclei and Nuclear Reactions of Multinucleon Transfer (Naukova Dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  2. T. L. Belyaeva, N. S. Zelenskaya, and N. V. Odintsov, Phys. At. Nucl. 56, 1179 (1993).

    Google Scholar 

  3. E. T. Ibraeva, M. A. Zhusupov, O. Imambekov, and S. K. Sakhiev, Phys. Part. Nucl. 42, 847 (2011).

    Article  Google Scholar 

  4. L. I. Galanina and N. S. Zelenskaya, Fiz. Elem. Chastits At. Yadra 1, 11 (2001).

    Google Scholar 

  5. L. I. Galanina and N. S. Zelenskaya, QUADRO Program, Certificate of Rights Registration to Software (2016).

  6. D. K. Nauruzbayev, V. Z. Goldberg, A. K. Nurmukhanbetova, et al., Phys. Rev. C 96, 014322 (2017).

    Article  ADS  Google Scholar 

  7. J. A. Wheeler, Phys. Rev. 52, 1107 (1937).

    Article  ADS  Google Scholar 

  8. R. H. Helm, Phys. Rev. 104, 1466 (1956).

    Article  ADS  Google Scholar 

  9. K. A. Gridnev, M. P. Kartamyshev, J. S. Vaagen, et al., Int. J. Mod. Phys. E 11, 359 (2002).

    Article  ADS  Google Scholar 

  10. K. A. Gridnev, V. V. Dyachkov, and A. V. Yushkov, Bull. Russ. Acad. Sci.: Phys. 78, 640 (2014).

    Article  Google Scholar 

  11. K. A. Gridnev, V. V. Dyachkov, and A. V. Yushkov, Bull. Russ. Acad. Sci.: Phys. 79, 856 (2015).

    Article  Google Scholar 

  12. V. V. D’yachkov, Yu. A. Zaripova, and A. V. Yushkov, Vestn. KazNU, Ser. Fiz., No. 4 (44), 80–84 (2015).

  13. V. V. Dyachkov, Yu. A. Zaripova, A. V. Yushkov, T. K. Zholdybayev, and Zh. K. Kerimkulov, Bull. Russ. Acad. Sci.: Phys. 81, 1174 (2017).

    Article  Google Scholar 

  14. Yu. A. Zaripova, V. V. Dyachkov, A. V. Yushkov, T. K. Zholdybayev, and D. K. Gridnev, Int. J. Mod. Phys. E 27, 18500171 (2018).

    Article  Google Scholar 

  15. V. V. Volkov, Sov. J. Part. Nucl. 2 (2), 1 (1971).

    Google Scholar 

  16. K. A. Gridnev, K. V. Ershov, V. G. Kartavenko, et al., NATO Sci. Ser. 166, 639 (2004).

    Google Scholar 

  17. G. Hauser, R. Lohken, H. Rebel, et al., Nucl. Phys. A 128, 81 (1969).

    Article  ADS  Google Scholar 

  18. N. N. Pavlova and A. V. Yushkov, Sov. J. Nucl. Phys. 23, 131 (1976).

    Google Scholar 

  19. M. Yasue, T. Tanabe, F. Soga, et al., Nucl. Phys. A 394, 29 (1983).

    Article  ADS  Google Scholar 

  20. S. M. Smith, G. Tibell, A. A. Cowley, et al., Nucl. Phys. A 207, 273 (1973).

    Article  ADS  Google Scholar 

  21. B. Tatischeff and I. Brissaud, Nucl. Phys. A 155, 89 (1970).

    Article  ADS  Google Scholar 

  22. F. Michel, J. Albinski, P. Belery, et al., Phys. Rev. C 28, 1904 (1983).

    Article  ADS  Google Scholar 

  23. M. Reed, Tech. Rep. No. 69-14 (1968).

  24. H. Abele, H. J. Hauser, A. Körber, et al., Zeitschr. Phys. A 326, 373 (1987).

    ADS  Google Scholar 

  25. H. Rebel, G. W. Schweimer, G. Schatz, et al., Nucl. Phys. A 182, 145 (1972).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the state grant financing of basic research, project no. IRN AR05131884.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Dyachkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyachkov, V.V., Dyussebayeva, K.S., Zaripova, Y.A. et al. Mechanisms of Modulation Formation in Elastic Diffraction Scattering of Charged Particles. Phys. Atom. Nuclei 83, 1705–1713 (2020). https://doi.org/10.1134/S1063778820100051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820100051

Keywords:

Navigation