Skip to main content
Log in

Tensor Interaction Effects on Stellar Electron Capture and Beta-Decay Rates

  • NUCLEI
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The Gamow–Teller strength functions as well as electron capture and \(\beta\) decay rates for \({}^{56,78}\)Ni in hot stellar environment are calculated within a thermodynamically consistent approach based on the thermal quasiparticle RPA. We present a thorough analysis of the tensor interaction effects on the GT strength functions at zero and finite temperatures. To this aim we use self-consistent calculations with the Skyrme interaction. Several Skyrme interactions are used in order to verify the sensitivity of the obtained results to the Skyrme force parameters. It is pointed out that finite temperature amplifies the effect of tensor correlations on the GT strength functions. Our calculations of electron capture and \(\beta\) decay rates demonstrate the importance of the tensor interaction for simulation of supernova weak-interaction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The mass difference \(M(^{56}\textrm{Cu})-M(^{56}\textrm{Ni})=14.95\) MeV [37].

  2. Note, that in our definition \(Q=M_{f}-M_{i}\), while in [36] the \(Q\)-value is defined with opposite sign.

REFERENCES

  1. K. Langanke and G. Martínez-Pinedo, Rev. Mod. Phys. 75, 819 (2003).

    Article  ADS  Google Scholar 

  2. G. Fuller, W. Fowler, and M. Newman, Astrophys. J. Suppl. Ser. 42, 447 (1980).

    Article  ADS  Google Scholar 

  3. G. Fuller, W. Fowler, and M. Newman, Astrophys. J. Suppl. Ser. 48, 279 (1982).

    Article  ADS  Google Scholar 

  4. G. Fuller, W. Fowler, and M. Newman, Astrophys. J. 252, 715 (1982).

    Article  ADS  Google Scholar 

  5. G. Fuller, W. Fowler, and M. Newman, Astrophys. J. 293, 1 (1985).

    Article  ADS  Google Scholar 

  6. E. Caurier, K. Langanke, G. Martínez-Pinedo, and F. Nowacki, Nucl. Phys. A 653, 439 (1999).

  7. K. Langanke and G. Martínez-Pinedo, Nucl. Phys. A 673, 481 (2000).

    Article  ADS  Google Scholar 

  8. K. Langanke and G. Martínez-Pinedo, At. Data Nucl. Data Tables 79, 1 (2001).

    Article  ADS  Google Scholar 

  9. K. Langanke, E. Kolbe, and D. J. Dean, Phys. Rev. C 63, 032801 (2001).

    Article  ADS  Google Scholar 

  10. J. Sampaio, K. Langanke, G. Martínez-Pinedo, E. Kolbe, and D. Dean, Nucl. Phys. A 718, 440 (2003).

  11. A. A. Dzhioev, A. I. Vdovin, V. Y. Ponomarev, and J. Wambach, Phys. At. Nucl. 72, 1320 (2009).

    Article  Google Scholar 

  12. A. A. Dzhioev and A. I. Vdovin, Bull. Russ. Acad. Sci.: Phys. 74, 487 (2010).

    Article  Google Scholar 

  13. A. A. Dzhioev, A. I. Vdovin, V. Y. Ponomarev, J. Wambach, K. Langanke, and G. Martínez-Pinedo, Phys. Rev. C 81, 015804 (2010).

    Article  ADS  Google Scholar 

  14. V. G. Soloviev, Theory of Atomic Nuclei, Quasiparticles and Phonons (Taylor & Francis, 1992).

    Google Scholar 

  15. A. A. Dzhioev, A. I. Vdovin, and C. Stoyanov, Phys. At. Nucl. 79, 1019 (2016).

    Article  Google Scholar 

  16. A. A. Dzhioev, A. I. Vdovin, and C. Stoyanov, Phys. Rev. C 100, 025801 (2019).

    Article  ADS  Google Scholar 

  17. C. Bai, H. Sagawa, H. Zhang, X. Zhang, G. Colò, and F. Xu, Phys. Lett. B 675, 28 (2009).

    Article  ADS  Google Scholar 

  18. C. L. Bai, H. Q. Zhang, X. Z. Zhang, F. R. Xu, H. Sagawa, and G. Colò, Phys. Rev. C 79, 041301 (2009).

    Article  ADS  Google Scholar 

  19. Y. Takahashi and H. Umezawa, Int. J. Mod. Phys. B 10, 1755 (1996).

    Article  ADS  Google Scholar 

  20. H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and Condensed States (North-Holland, 1982).

    Google Scholar 

  21. I. Ojima, Ann. Phys. (N. Y.) 137, 1 (1981).

    Article  ADS  Google Scholar 

  22. A. Dzhioev and A. Vdovin, Int. J. Mod. Phys. E 18, 1535 (2009).

    Article  ADS  Google Scholar 

  23. N. V. Giai and H. Sagawa, Phys. Lett. B 106, 379 (1981).

    Article  ADS  Google Scholar 

  24. N. Van Giai, C. Stoyanov, and V. V. Voronov, Phys. Rev. C 57, 1204 (1998).

    Article  ADS  Google Scholar 

  25. G. Colò, H. Sagawa, S. Fracasso, and P. F. Bortignon, Phys. Lett. B 646, 227 (2007).

    Article  ADS  Google Scholar 

  26. D. M. Brink and F. Stancu, Phys. Rev. C 75, 064311 (2007).

    Article  ADS  Google Scholar 

  27. A. P. Severyukhin and E. O. Sushenok, Phys. At. Nucl. 78, 680 (2015).

    Article  Google Scholar 

  28. G. Martínez-Pinedo, K. Langanke, and D. J. Dean, Astrophys. J. Suppl. Ser. 126, 493 (2002).

  29. C. Sullivan, E. O’Connor, R. G. T. Zegers, T. Grubb, and S. M. Austin, Astrophys. J. 816, 44 (2015).

    Article  ADS  Google Scholar 

  30. P. F. Bortignon, A. Bracco, and R. A. Broglia, Giant Resonances: Nuclear Structure at Finite Temperature, Contemporary Concepts in Physics (Harwood Academic, 1998).

    Google Scholar 

  31. T. Lesinski, M. Bender, K. Bennaceur, T. Duguet, and J. Meyer, Phys. Rev. C 76, 014312 (2007).

    Article  ADS  Google Scholar 

  32. M. Sasano, G. Perdikakis, R. G. Zegers, S. M. Austin, D. Bazin, B. A. Brown, C. Caesar, A. L. Cole, J. M. Deaven, N. Ferrante, C. J. Guess, G. W. Hitt, R. Meharchand, F. Montes, J. Palardy, A. Prinke, et al., Phys. Rev. Lett. 107, 1 (2011).

    Article  Google Scholar 

  33. M. Sasano, G. Perdikakis, R. G. Zegers, S. M. Austin, D. Bazin, B. A. Brown, C. Caesar, A. L. Cole, J. M. Deaven, N. Ferrante, C. J. Guess, G. W. Hitt, M. Honma, R. Meharchand, F. Montes, J. Palardy, et al., Phys. Rev. C 86, 1 (2012).

    Article  Google Scholar 

  34. Y. F. Niu, G. Colò, M. Brenna, P. F. Bortignon, and J. Meng, Phys. Rev. C 85, 034314 (2012).

    Article  ADS  Google Scholar 

  35. K. Langanke, Phys. Lett. B 436, 19 (1998).

    Article  ADS  Google Scholar 

  36. K. Langanke, G. Martínez-Pinedo, J. M. Sampaio, D. J. Dean, W. R. Hix, O. E. Messer, A. Mezzacappa, M. Liebendörfer, H. T. Janka, and M. Rampp, Phys. Rev. Lett. 90, 4 (2003).

  37. P. Möller, A. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109–110, 1 (2016).

    Article  ADS  Google Scholar 

  38. P. T. Hosmer, H. Schatz, A. Aprahamian, O. Arndt, R. R. C. Clement, A. Estrade, K.-L. Kratz, S. N. Liddick, P. F. Mantica, W. F. Mueller, F. Montes, A. C. Morton, M. Ouellette, E. Pellegrini, B. Pfeiffer, P. Reeder, et al., Phys. Rev. Lett. 94, 112501 (2005).

    Article  ADS  Google Scholar 

  39. Y. F. Niu, Z. M. Niu, G. Colò, and E. Vigezzi, Phys. Rev. Lett. 114, 1 (2015).

    Article  Google Scholar 

  40. C. Robin and E. Litvinova, Phys. Rev. C 98, 2 (2018).

    Article  Google Scholar 

  41. A. A. Dzhioev, A. I. Vdovin, and J. Wambach, Phys. Rev. C 92, 045804 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Dzhioev, S. V. Sidorov, A. I. Vdovin or T. Yu. Tretyakova.

Appendix

Appendix

Here we give explicit form of the TQRPA equations for \(J^{\pi}=1^{+}\) charge-changing transitions in hot nuclei taking into account the tensor part of the residual particle–hole interaction (16). More technical details can be found in [11, 13, 15].

Within the TQRPA the thermal Hamiltonian is diagonalized in terms of thermal multipole phonons:

$$\mathcal{H}\approx\sum_{JMi}\omega_{Ji}(T)(Q^{\dagger}_{JMi}Q_{JMi}-\widetilde{Q}^{\dagger}_{JMi}\widetilde{Q}_{JMi}).$$
(A.1)

For charge-changing multipole transitions the thermal phonon operators are defined as a linear superposition of creation and annihilation operators of proton–neutron thermal quasiparticle pairs

$$Q^{\dagger}_{JMi}=\sum_{j_{p}j_{n}}\Bigl{\{}\psi^{Ji}_{j_{p}j_{n}}[\beta^{\dagger}_{j_{p}}\beta^{\dagger}_{j_{n}}]^{J}_{M}+\widetilde{\psi}^{Ji}_{j_{p}j_{p}}[\widetilde{\beta}^{\dagger}_{\overline{\jmath_{p}}}\widetilde{\beta}^{\dagger}_{\overline{\jmath_{n}}}]^{J}_{M}$$
$${}+i\eta^{Ji}_{j_{p}j_{n}}[\beta^{\dagger}_{j_{p}}\widetilde{\beta}^{\dagger}_{\overline{\jmath_{n}}}]^{J}_{M}+i\widetilde{\eta}^{Ji}_{j_{p}j_{n}}[\widetilde{\beta}^{\dagger}_{\overline{\jmath_{p}}}\beta^{\dagger}_{j_{n}}]^{J}_{M}$$
$${}+\phi^{Ji}_{j_{p}j_{n}}[\beta_{\overline{\jmath_{p}}}\beta_{\overline{\jmath_{n}}}]^{J}_{M}+\widetilde{\phi}^{Ji}_{j_{p}j_{n}}[\widetilde{\beta}_{j_{p}}\widetilde{\beta}_{j_{n}}]^{J}_{M}$$
$${}+i\xi^{Ji}_{j_{p}j_{n}}[\beta_{\overline{\jmath_{p}}}\widetilde{\beta}_{j_{n}}]^{J}_{M}+i\widetilde{\xi}^{Ji}_{j_{p}j_{n}}[\widetilde{\beta}_{j_{p}}\beta_{\overline{\jmath_{n}}}]^{J}_{M}\Bigr{\}}.$$
(A.2)

Here, \([]^{J}_{M}\) denotes the coupling of two single-particle angular momenta \(j_{p},j_{n}\) to the total angular momentum \(J\). In what follows we will drop the index \(J\) and assume that \(J^{\pi}=1^{+}\). In turn, thermal quasiparticles are normal modes of the mean field and pairing parts of the thermal Hamiltonian

$$\mathcal{H}_{\textrm{mf}}+\mathcal{H}_{\textrm{pair}}$$
$${}\simeq\sum_{\tau=n,p}{\sum_{jm}}^{\tau}\varepsilon_{j}(T)(\beta^{\dagger}_{jm}\beta_{jm}-\widetilde{\beta}^{\dagger}_{jm}\widetilde{\beta}_{jm}),$$
(A.3)

and their vacuum is the thermal vacuum in the BCS approximation. The physical meaning of different terms in (A.2) is explained in [13, 41]. Here we just mention that the creation of a negative-energy tilde thermal quasiparticle corresponds to the annihilation of a thermally excited Bogoliubov quasiparticle. Therefore, the spectrum of thermal phonons contains negative-energy and low-energy states which do not exist at zero temperature. These ‘‘new’’ phonon states are interpreted as thermally unblocked transitions between nuclear excited states.

Following [15], we first introduce the linear combinations of phonon amplitudes:

$$\binom{g}{w}^{i}_{j_{p}j_{n}}=\psi^{i}_{j_{p}j_{n}}\pm\phi^{i}_{j_{p}j_{n}},$$
$$\binom{\widetilde{g}}{\widetilde{w}}^{i}_{j_{p}j_{n}}=\widetilde{\psi}^{i}_{j_{p}j_{n}}\pm\widetilde{\phi}^{i}_{j_{p}j_{n}},$$
$$\binom{t}{s}^{i}_{j_{p}j_{n}}=\eta^{i}_{j_{p}j_{n}}\pm\xi^{i}_{j_{p}j_{n}},$$
$$\binom{\widetilde{t}}{\widetilde{s}}^{i}_{j_{p}j_{n}}=\widetilde{\eta}^{i}_{j_{p}j_{n}}\pm\widetilde{\xi}^{i}_{j_{p}j_{n}}.$$
(A.4)

Then, applying the thermal state condition (10) for the vacuum of thermal phonons it can be shown that the following relations are valid

$$\binom{g}{w}^{i}_{j_{p}j_{n}}=(x_{j_{p}}x_{j_{n}}-{e}^{-\omega_{i}/2T}y_{j_{p}}y_{j_{n}})\binom{G}{W}^{i}_{j_{p}j_{n}}$$
$$\binom{\widetilde{g}}{\widetilde{w}}^{i}_{j_{p}j_{n}}=\mp(y_{j_{p}}y_{j_{n}}-{e}^{-\omega_{i}/2T}x_{j_{p}}x_{j_{n}})\binom{G}{W}^{i}_{j_{p}j_{n}}$$
$$\binom{t}{s}^{i}_{j_{p}j_{n}}=(x_{j_{p}}y_{j_{n}}-{e}^{-\omega_{i}/2T}y_{j_{p}}x_{j_{n}})\binom{T}{S}^{i}_{j_{p}j_{n}}$$
$$\binom{\widetilde{t}}{\widetilde{s}}^{i}_{j_{p}j_{n}}=\mp(y_{j_{p}}x_{j_{n}}$$
$${}-{e}^{-\omega_{i}/2T}x_{j_{p}}y_{j_{n}})\binom{T}{S}^{i}_{j_{p}j_{n}}.$$
(A.5)

Here, \(x_{j}\) and \(y_{j}\) (\(x^{2}_{j}+y^{2}_{j}=1\)) are the coefficients of the so-called thermal transformation which establishes a connection between Bogoliubov and thermal quasiparticles. Note that \(y_{j}\) are given by the nucleon Fermi–Dirac function and they define a number of thermally excited Bogoliubov quasiparticles in the thermal vacuum (see [13] for more details). The variables \(G\), \(W\), \(T\), and \(S\) are normalized according to

$$\sum_{j_{n}j_{p}}\Bigl{(}G^{i}_{j_{p}j_{n}}W^{i^{\prime}}_{j_{p}j_{n}}(1-y^{2}_{j_{p}}-y^{2}_{j_{n}})$$
$${}-T^{i}_{j_{p}j_{n}}S^{i^{\prime}}_{j_{p}j_{n}}(y^{2}_{j_{p}}-y^{2}_{j_{n}})\Bigr{)}$$
$${}=\delta_{ii^{\prime}}/(1-{e}^{-\omega_{i}/T}).$$
(A.6)

Applying the equation of motion method, we get the system of TQRPA equations for unknown variables \(G\), \(W\), \(T\), and \(S\) and phonon energies \(\omega_{i}\)

$$G^{i}_{j_{p}j_{n}}\pm W^{i}_{j_{p}j_{n}}=\frac{2}{3}\frac{1}{\varepsilon^{(+)}_{j_{p}j_{n}}\mp\omega_{i}}$$
$${}\times\sum_{n=1}^{2N+2}f^{(n)}_{j_{p}j_{n}}\bigl{(}u^{(+)}_{j_{p}j_{n}}D^{in}_{+}\pm u^{(-)}_{j_{p}j_{n}}D^{in}_{-}\bigr{)},$$
$$T^{i}_{j_{p}j_{n}}\pm S^{i}_{j_{p}j_{n}}=\frac{2}{3}\frac{1}{\varepsilon^{(-)}_{j_{p}j_{n}}\mp\omega_{i}}$$
$${}\times\sum_{n=1}^{2N+2}f^{(n)}_{j_{p}j_{n}}\bigl{(}v^{(-)}_{j_{p}j_{n}}D^{in}_{+}\pm v^{(+)}_{j_{p}j_{n}}D^{in}_{-}\bigr{)}.$$
(A.7)

In the above equations we have introduced the following combinations of the thermal quasiparticle energies and the Bogoliubov \((u,v)\) coefficients: \(\varepsilon^{(\pm)}_{j_{p}j_{n}}=\varepsilon_{j_{p}}\pm\varepsilon_{j_{n}}\), \(u^{(\pm)}_{j_{p}j_{n}}=u_{j_{p}}v_{j_{n}}\pm v_{j_{p}}u_{j_{n}}\), and \(v^{(\pm)}_{j_{p}j_{n}}=u_{j_{p}}u_{j_{n}}\pm v_{j_{p}}v_{j_{n}}\). The factors \(f^{(n)}_{j_{p}j_{n}}\) are given by

$$f^{(n)}_{j_{p}j_{n}}$$
$${}=\begin{cases}\kappa_{1}^{(n)}g^{(01k)}_{j_{p}j_{n}},\quad\textrm{if }n=1,k,\\ \kappa_{1}^{(n)}g^{(21k)}_{j_{p}j_{n}},\quad\textrm{if }n=N+k,\\ \lambda_{1}t^{(21)}_{j_{p}j_{n}},\quad\textrm{if }n=2N+1,\\ \lambda_{1}t^{(01)}_{j_{p}j_{n}}-\lambda_{2}t^{(21)}_{j_{p}j_{n}},\quad\textrm{if }n=2N+2.\end{cases}$$
(A.8)

Here, the isovector strength parameters \(\kappa_{1}^{(n)}\) and the reduced matrix elements \(g^{(LJk)}_{j_{p}j_{n}}\) stem from the central part of the residual interaction and they are defined in [24], while \(t^{(LJ)}_{j_{p}j_{n}}\) denotes the reduced single-particle matrix elements due to tensor interaction

$$t^{(LJ)}_{j_{p}j_{n}}=\langle j_{p}||i^{L}r^{L}T_{LJ}||j_{n}\rangle.$$
(A.9)

And finally, \(D^{in}_{\pm}\) are defined as

$$D^{in}_{+}=\sum_{j_{p}j_{n}}f^{(n)}_{j_{p}j_{n}}\Bigl{\{}u^{(+)}_{j_{p}j_{n}}(1-y^{2}_{j_{p}}-y^{2}_{j_{n}})G^{i}_{j_{p}j_{n}}$$
$${}-v^{(-)}_{j_{p}j_{n}}(y^{2}_{j_{p}}-y^{2}_{j_{n}})T^{i}_{j_{p}j_{n}}\Bigr{\}},$$
$$D^{in}_{-}=\sum_{j_{p}j_{n}}f^{(n)}_{j_{p}j_{n}}\Bigl{\{}u^{(-)}_{j_{p}j_{n}}(1-y^{2}_{j_{p}}-y^{2}_{j_{n}})W^{i}_{j_{p}j_{n}}$$
$${}-v^{(+)}_{j_{p}j_{n}}(y^{2}_{j_{p}}-y^{2}_{j_{n}})S^{i}_{j_{p}j_{n}}\Bigr{\}},$$
(A.10)

with

$$d^{(n)}_{j_{p}j_{n}}=\begin{cases}g^{(01k)}_{j_{p}j_{n}},\quad\textrm{if }n=1,k,\\ g^{(21k)}_{j_{p}j_{n}},\quad\textrm{if }n=N+k,\\ t^{(01)}_{j_{p}j_{n}},\quad\textrm{if }n=2N+1,\\ t^{(21)}_{j_{p}j_{n}},\quad\textrm{if }n=2N+2.\end{cases}$$
(A.11)

Because of the separable form of the residual interaction the TQRPA equations for phonon amplitudes and phonon energies \(\omega_{i}\) can be reduced to the set of equations for \(4N+4\) unknown variables \(D^{in}_{\mp}\)

$$\left(\begin{array}{cc}\mathcal{M}_{1}-\frac{1}{2}I&\mathcal{M}_{2}\\ \mathcal{M}_{2}&\mathcal{M}_{3}-\frac{1}{2}I\end{array}\right)\left(\begin{array}{c} D_{+}\\ D_{-} \end{array}\right)=0.$$
(A.12)

The matrix elements of the \((2N+2)\times(2N+2)\) matrices \(\mathcal{M}_{\beta}\) are the following:

$$\mathcal{M}^{nn^{\prime}}_{1,3}=\frac{1}{3}\sum_{j_{p}j_{n}}d^{(Jn)}_{j_{p}j_{n}}f^{(Jn^{\prime})}_{j_{p}j_{n}}$$
$${}\times\left\{\frac{\varepsilon_{j_{p}j_{n}}^{(+)}(u^{(\pm)}_{j_{p}j_{n}})^{2}}{(\varepsilon_{j_{p}j_{n}}^{(+)})^{2}-\omega^{2}_{Ji}}(1-y^{2}_{j_{p}}-y^{2}_{j_{n}})\right.$$
$${}-\left.\frac{\varepsilon_{j_{p}j_{n}}^{(-)}(v^{(\mp)}_{j_{p}j_{n}})^{2}}{(\varepsilon_{j_{p}j_{n}}^{(-)})^{2}-\omega^{2}_{Ji}}(y^{2}_{j_{p}}-y^{2}_{j_{n}})\right\},$$
$$\mathcal{M}^{nn^{\prime}}_{2}=\frac{1}{3}\omega_{i}\sum_{j_{n}j_{p}}d^{(Jn)}_{j_{p}j_{n}}f^{(Jn^{\prime})}_{j_{p}j_{n}}$$
$${}\times\left\{\frac{u^{(+)}_{j_{p}j_{n}}u^{(-)}_{j_{p}j_{n}}}{(\varepsilon_{j_{p}j_{n}}^{(+)})^{2}-\omega^{2}_{Ji}}(1-y^{2}_{j_{p}}-y^{2}_{j_{n}})\right.$$
$${}-\left.\frac{v^{(+)}_{j_{p}j_{n}}v^{(-)}_{j_{p}j_{n}}}{(\varepsilon_{j_{p}j_{n}}^{(-)})^{2}-\omega^{2}_{Ji}}(y^{2}_{j_{p}}-y^{2}_{j_{n}})\right\},$$

where \(1\leq n\), \(n^{\prime}\leq 2N+2\). Thus, the TQRPA eigenvalues \(\omega_{Ji}\) are the roots of the secular equation

$$\textrm{det}\left(\begin{array}{cc}\mathcal{M}_{1}-\frac{1}{2}I&\mathcal{M}_{2}\\ \mathcal{M}_{2}&\mathcal{M}_{3}-\frac{1}{2}I\end{array}\right)=0,$$
(A.13)

while the phonon amplitudes corresponding to the TQRPA eigenvalue \(\omega_{i}\) are determined by Eqs. (A.4), (A.5), and (A.7), taking into account the normalization condition (A.6).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhioev, A.A., Sidorov, S.V., Vdovin, A.I. et al. Tensor Interaction Effects on Stellar Electron Capture and Beta-Decay Rates. Phys. Atom. Nuclei 83, 143–160 (2020). https://doi.org/10.1134/S106377882002009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377882002009X

Navigation