Skip to main content
Log in

Fermion Mass and Mixing in a Simple Extension of the Standard Model Based on T7 Flavor Symmetry

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We build a simple Standard Model extension based on T7 flavor symmetry which accommodates lepton mass, mixing with non-zero θ13, and CP violation phase. The lepton mixing matrix is obtained from three triplets and one singlet under T7 symmetry, and the charged-lepton mass is derived through the spontaneous symmetry breaking by just one T7 triplet (φ), while neutrinos get small masses from one SU(2) L doublet and two SU(2)L singlets in which one is in 1 and the two others are in 3 and 3* under T7, respectively. There exist viable parameters of the model that predict the effective Majorana neutrino mass with values mβ ≃ 10−2 eV and 4.95 × 10−2 eV as well as a lightest neutrino mass mlight ≃ 4.97 × 10−3 eV and 1.61 × 10−3 eV for the normal and inverted neutrino mass hierarchies, respectively. The model also gives a remarkable prediction of Dirac CP violation δCP ≃ 303.3° in the normal hierarchy and δCP ≃ 56.69° in the inverted hierarchy which is still missing in the neutrino mixing matrix. The quark mixing angles of the model are closed to the experimental data, whereas the obtained values for the quark masses are consistent with with the experimental data at the tree level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Vien, Int. J. Mod. Phys. A 31, 1650039 (2016).

    Article  ADS  Google Scholar 

  2. A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Annu. Rev. Nucl. Part. Sci. 59, 191 (2009).

    Article  ADS  Google Scholar 

  3. T. Asaka, S. Blanchet, and M. Shaposhnikov, Phys. Lett. B 631, 151 (2005).

    Article  ADS  Google Scholar 

  4. T. Asaka and M. Shaposhnikov, Phys. Lett. B 620, 17 (2005).

    Article  ADS  Google Scholar 

  5. F. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008).

    Article  ADS  Google Scholar 

  6. L. Canetti, M. Drewes, T. Frossard, and M. Shaposhnikov, Phys. Rev. D 87, 093006 (2013).

    Article  ADS  Google Scholar 

  7. T. Araki and Y. F. Li, Phys. Rev. D 85, 065016 (2012).

    Article  ADS  Google Scholar 

  8. Z.-z. Xing, Chin. Phys. C 36, 281 (2012).

    Article  ADS  Google Scholar 

  9. P. F. Harrison, D. H. Perkins, and W. G. Scott, Phys. Lett. B 530, 167 (2002).

    Article  ADS  Google Scholar 

  10. Z.-z. Xing, Phys. Lett. B 533, 85 (2002).

    Article  ADS  Google Scholar 

  11. X.-G. He and A. Zee, Phys. Lett. B 560, 87 (2003).

    Article  ADS  Google Scholar 

  12. X.-G. He and A. Zee, Phys. Rev. D 68, 037302 (2003).

    Article  ADS  Google Scholar 

  13. M. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, J. High Energy Phys. 1411, 052 (2014).

    Article  ADS  Google Scholar 

  14. C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016 and 2017 update).

    Article  ADS  Google Scholar 

  15. E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001).

    Article  ADS  Google Scholar 

  16. K. S. Babu, E. Ma, and J. W. F. Valle, Phys. Lett. B 552, 207 (2003).

    Article  ADS  Google Scholar 

  17. G. Altarelli and F. Feruglio, Nucl. Phys. B 720, 64 (2005).

    Article  ADS  Google Scholar 

  18. E. Ma, Phys. Rev. D 73, 057304 (2006).

    Article  ADS  Google Scholar 

  19. X. G. He, Y. Y. Keum, and R. R. Volkas, J. High Energy Phys. 0604, 039 (2006).

    Article  ADS  Google Scholar 

  20. Y. BenTov, X.-G. He, and A. Zee, J. High Energy Phys. 1212, 093 (2012).

    Article  ADS  Google Scholar 

  21. S. Morisi, M. Picariello, and E. Torrente-Lujan, Phys. Rev. D 75, 075015 (2007).

    Article  ADS  Google Scholar 

  22. C. S. Lam, Phys. Lett. B 656, 193 (2007).

    Article  ADS  Google Scholar 

  23. F. Bazzocchi, S. Kaneko, and S. Morisi, J. High Energy Phys. 0803, 063 (2008).

    Article  ADS  Google Scholar 

  24. A. Blum, C. Hagedorn, and M. Lindner, Phys. Rev. D 77, 076004 (2008).

    Article  ADS  Google Scholar 

  25. F. Bazzochi, M. Frigerio, and S. Morisi, Phys. Rev. D 78, 116018 (2008).

    Article  ADS  Google Scholar 

  26. G. Altarelli, F. Feruglio, and C. Hagedorn, J. High Energy Phys. 0803, 052 (2008).

    Article  ADS  Google Scholar 

  27. M. Hirsch, S. Morisi, and J. W. F. Valle, Phys. Rev. D 78, 093007 (2008).

    Article  ADS  Google Scholar 

  28. E. Ma, Phys. Lett. B 671, 366 (2009).

    Article  ADS  Google Scholar 

  29. G. Altarelli and D. Meloni, J. Phys. G 36, 085005 (2009).

    Article  ADS  Google Scholar 

  30. Y. Lin, Nucl. Phys. B 813, 91 (2009).

    Article  ADS  Google Scholar 

  31. Y. H. Ahn and C.-S. Chen, Phys. Rev. D 81, 105013 (2010).

    Article  ADS  Google Scholar 

  32. J. Barry and W. Rodejohann, Phys. Rev. D 81, 093002 (2010).

    Article  ADS  Google Scholar 

  33. G.-J. Ding and D. Meloni, Nucl. Phys. B 855, 21 (2012).

    Article  ADS  Google Scholar 

  34. P. V. Dong, L. T. Hue, H. N. Long, and D. V. Soa, Phys. Rev. D 81, 053004 (2010).

    Article  ADS  Google Scholar 

  35. A. Dev, P. Ramadevi, and S. Uma Sankar, J. High Energy Phys. 1511, 034 (2015).

    Article  ADS  Google Scholar 

  36. F. González Canales, A. Mondragón, M. Mondragón, U. J. Saldaña Salazar, and L. Velasco-Sevilla, Phys. Rev. D 88, 096004 (2013).

    Article  ADS  Google Scholar 

  37. E. Ma and B. Melić, Phys. Lett. B 725, 402 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  38. P. V. Dong, H. N. Long, C. H. Nam, and V. V. Vien, Phys. Rev. D 85, 053001 (2012).

    Article  ADS  Google Scholar 

  39. V. V. Vien and H. N. Long, J. Exp. Theor. Phys. 118, 869 (2014 and the references therein).

    Article  ADS  Google Scholar 

  40. X. Zhang, J. Phys. G 45, 035004 (2018).

    Article  ADS  Google Scholar 

  41. P. V. Dong, H. N. Long, D. V. Soa, and V. V. Vien, Eur. Phys. J. C 71, 1544 (2011).

    ADS  Google Scholar 

  42. V. V. Vien and H. N. Long, Adv. High Energy Phys. 2014, 192536 (2014).

    Article  Google Scholar 

  43. V. V. Vien, H. N. Long, and D. P. Khoi, Int. J. Mod. Phys. A 30, 1550102 (2015 and the references therein).

    Article  ADS  Google Scholar 

  44. P. H. Frampton and T. W. Kephart, Int. J. Mod. Phys. A 10, 4689 (1995).

    Article  ADS  Google Scholar 

  45. P. H. Frampton and T. W. Kephart, Phys. Rev. D 64, 086007 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  46. W. Grimus and L. Lavoura, Phys. Lett. B 572, 189 (2003).

    Article  ADS  Google Scholar 

  47. W. Grimus, A. S. Joshipura, S. Kaneko, L. Lavoura, and M. Tanimoto, J. High Energy Phys. 0407, 078 (2004).

    Article  ADS  Google Scholar 

  48. M. Frigerio, S. Kaneko, E. Ma, and M. Tanimoto, Phys. Rev. D 71, 011901 (2005).

    Article  ADS  Google Scholar 

  49. K. S. Babu and J. Kubo, Phys. Rev. D 71, 056006 (2005).

    Article  ADS  Google Scholar 

  50. M. Honda, R. Takahashi, and M. Tanimoto, J. High Energy Phys. 0601, 042 (2006).

    Article  ADS  Google Scholar 

  51. H. Ishimori, T. Kobayashi, H. Ohki, Yu. Omura, R. Takahashi, and M. Tanimoto, Phys. Lett. B 662, 178 (2008).

    Article  ADS  Google Scholar 

  52. H. Abe, K-S. Choi, T. Kobayashi, and H. Ohki, Nucl. Phys. B 820, 317 (2009).

    Article  ADS  Google Scholar 

  53. T. Araki, T. Kobayashi, J. Kubo, S. Ramos-Sánchez, M. Ratz, and P. K. S. Vandrevange, Nucl. Phys. B 805, 124 (2008).

    Article  ADS  Google Scholar 

  54. A. Adulpravitchai, A. Blum, and C. Hagedorn, J. High Energy Phys. 0903, 046 (2009).

    Article  ADS  Google Scholar 

  55. F. Feruglio, C. Hagedorn, Y. Lin, and L. Merlo, Nucl. Phys. B 775, 120 (2007).

    Article  ADS  Google Scholar 

  56. M.-C. Chen and K. T. Mahanthappa, Phys. Lett. B 652, 34 (2007).

    Article  ADS  Google Scholar 

  57. P. H. Frampton and T. W. Kephart, J. High Energy Phys. 0709, 110 (2007).

    Article  ADS  Google Scholar 

  58. G.-J. Ding, Phys. Rev. D 78, 036011 (2008).

    Article  ADS  Google Scholar 

  59. P. H. Frampton and S. Matsuzaki, Phys. Lett. B 679, 347 (2009).

    Article  ADS  Google Scholar 

  60. D. A. Eby, P. H. Frampton, and S. Matsuzaki, Phys. Lett. B 671, 386 (2009).

    Article  ADS  Google Scholar 

  61. C. M. Ho and T. W. Kephart, Phys. Lett. B 687, 201 (2010).

    Article  ADS  Google Scholar 

  62. P. H. Frampton, C. M. Ho, T. W. Kephart, and S. Matsuzaki, Phys. Rev. D 82, 113007 (2010).

    Article  ADS  Google Scholar 

  63. D. A. Eby, P. H. Frampton, X.-G. He, and T. W. Kephart, Phys. Rev. D 84, 037302 (2011).

    Article  ADS  Google Scholar 

  64. P. H. Frampton, C. M. Ho, and T. W. Kephart, Phys. Rev. D 89, 027701 (2014).

    Article  ADS  Google Scholar 

  65. C. Luhn, S. Nasri, and P. Ramond, Phys. Lett. B 652, 27 (2007).

    Article  ADS  Google Scholar 

  66. C. Hagedorn, M. A. Schmidt, and A. Yu. Smirnov, Phys. Rev. D 79, 036002 (2009).

    Article  ADS  Google Scholar 

  67. Q.-H. Cao, S. Khalil, E. Ma, and H. Okada, Phys. Rev. Lett. 106, 131801 (2011).

    Article  ADS  Google Scholar 

  68. Q.-H. Cao, S. Khalil, E. Ma, and H. Okada, Phys. Rev. D 84, 071302 (R (2011).

    Article  ADS  Google Scholar 

  69. H. Ishimori, S. Khalil, and E. Ma, Phys. Rev. D 86, 013008 (2012).

    Article  ADS  Google Scholar 

  70. V. V. Vien and H. N. Long, Int. J. Mod. Phys. A 28, 1350159 (2013).

    Article  ADS  Google Scholar 

  71. V. V. Vien and H. N. Long, J. High Energy Phys. 1404, 133 (2014).

    Article  ADS  Google Scholar 

  72. V. V. Vien, Mod. Phys. Lett. A 29, 1450122 (2014).

    Article  ADS  Google Scholar 

  73. V. V. Vien, Mod. Phys. Lett. A 29, 1450139 (2014).

    Article  ADS  Google Scholar 

  74. V. V. Vien and H. N. Long, J. Korean Phys. Soc. 66, 1809 (2015).

    Article  ADS  Google Scholar 

  75. V. V. Vien and H. N. Long, Int. J. Mod. Phys. A 30, 1550117 (2015).

    Article  ADS  Google Scholar 

  76. A. E. Cárcamo Hernández, H. N. Long, and V. V. Vien, Eur. Phys. J. C 76, 242 (2016).

    Article  ADS  Google Scholar 

  77. V. V. Vien, A. E. Cárcamo Hernández, and H. N. Long, Nucl. Phys. B 913, 792 (2016).

    Article  ADS  Google Scholar 

  78. A. E. Cárcamo Hernández, Eur. Phys. J. C 76, 503 (2016).

    Article  Google Scholar 

  79. A. E. Cárcamo Hernández, I. de Medeiros Varzielas, and E. Schumacher, Phys. Rev. D 93, 016003 (2016).

    Article  Google Scholar 

  80. P. A. R. Ade et al. (Planck Collab.), Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  81. S. Wang, Y.-F. Wang, D.-M. Xia, and X. Zhang, Phys. Rev. D 94, 083519 (2016).

    Article  ADS  Google Scholar 

  82. X. Zhang, Phys. Rev. D 93, 083011 (2016).

    Article  ADS  Google Scholar 

  83. X. Zhang and B.-Q. Ma, Phys. Lett. B 713, 202 (2012).

    Article  ADS  Google Scholar 

  84. M. Tegmark, M. A. Strauss, M. R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, X. Wang, D. H. Weinberg, I. Zenavi, N. A. Bahcall, F. Hoyle, D. Schlegel, R. Scoccimarro, M. S. Vogeley, A. Berling, T. Budavari, et al., Phys. Rev. D 69, 103501 (2004).

    Article  ADS  Google Scholar 

  85. W. Rodejohann, Int. J. Mod. Phys. E 20, 1833 (2011).

    Article  ADS  Google Scholar 

  86. M. Mitra, G. Senjanović, and F. Vissani, Nucl. Phys. B 856, 26 (2012).

    Article  ADS  Google Scholar 

  87. S. M. Bilenky and C. Giunti, Mod. Phys. Lett. A 27, 1230015 (2012).

    Article  ADS  Google Scholar 

  88. W. Rodejohann, J. Phys. G 39, 124008 (2012).

    Article  ADS  Google Scholar 

  89. A. Merle, Int. J. Mod. Phys. D 22, 1330020 (2013).

    Article  ADS  Google Scholar 

  90. J. D. Vergados, H. Ejiri, and F. Simkovic, Rep. Prog. Phys. 75, 106301 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant no. 103.01-2017.341.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vien.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vien, V.V., Long, H.N. Fermion Mass and Mixing in a Simple Extension of the Standard Model Based on T7 Flavor Symmetry. Phys. Atom. Nuclei 82, 168–182 (2019). https://doi.org/10.1134/S1063778819020133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819020133

Navigation