Skip to main content
Log in

Change in the Shape of Nuclei in the Chains of Krypton, Strontium, Zirconium, Molybdenum, and Ruthenium Isotopes in the Relativistic-Mean-Field Approximation

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Changes in the shape of nuclei in the chains of even—even crypton, strontium, zirconium, molybdenum, and ruthenium isotopes are studied on the basis of the relativistic Hartree—Bogolyubov method implemented with the DD-PC1 and DD-ME2 Lagrangian models. Nucleon pairing is described in terms of separable two-body interaction. The dependence of the calculated nuclear features on the choice of pairing strength is investigated. The respective calculations show that, in the vicinity of N = 60, large jumps of the mean squares of charge radii and quadrupole-deformation parameters are observed for some strontium, zirconium, and molybdenum isotopes in response to variations in the pairing-strength parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Article  ADS  Google Scholar 

  2. M. V. Stoitsov, J. Dobaczewski, W. Naza-rewicz, S. Pittel, and D.J. Dean, Phys. Rev. C 68, 054312 (2003). http://www.fuw.edu.pl/∼dobaczew/thodri/thodri.htrnl.

    Article  ADS  Google Scholar 

  3. N. Tajima, Prog. Theor. Phys. Suppl. 142, 265 (2001).

    Article  ADS  Google Scholar 

  4. J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006).

    Article  ADS  Google Scholar 

  5. T. Nikšić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011).

    Article  ADS  Google Scholar 

  6. S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring, Phys. Rev. C 89, 054320 (2014).

    Article  ADS  Google Scholar 

  7. L. S. Geng, H. Toki, and J. Meng, Mod. Phys. Lett. A 19, 2171 (2004).

    Article  ADS  Google Scholar 

  8. M. Hemalatha, A. Bhagwat, A. Shrivastava, S. Kailas, and Y. K. Gambhir, Phys. Rev. C 70, 044320 (2004).

    Article  ADS  Google Scholar 

  9. R. Rodríguez-Guzmán, P. Sarriguren, L. M. Robledo, and S. Perez-Martin, Phys. Lett. B 691, 202 (2010).

    Article  ADS  Google Scholar 

  10. J. Xiang, Z. P. Li, Z. X. Li, J. M. Yao, and J. Meng, Nucl. Phys. A 873, 1 (2012).

    Article  ADS  Google Scholar 

  11. B. Kumar, S. K. Singh, and S. K. Patra, Int. J. Mod. Phys. E 24, 1550017 (2015).

    Article  ADS  Google Scholar 

  12. K. Nomura, R. Rodríguez-Guzmán, and L. M. Robledo, Phys. Rev. C 94, 044314 (2016).

    Article  ADS  Google Scholar 

  13. T. Togashi, Y. Tsunoda, T. Otsuka, and N. Shimizu, Phys. Rev. Lett. 117, 172502 (2016).

    Article  ADS  Google Scholar 

  14. V. I. Kuprikov, A. P. Soznik, and V. N. Tarasov, Vopr. At. Nauki Tekh., Ser.: Yad.-Fiz. Issled. 1(9), 23 (1990).

    Google Scholar 

  15. V. N. Tarasov, D. V. Tarasov, K. A. Gridnev, D. K. Gridnev, W. Greiner, V. G. Kartavenko, and V. I. Kuprikov, Bull. Russ. Acad. Sci.: Phys. 72, 842 (2008).

    Article  Google Scholar 

  16. I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).

    Article  ADS  Google Scholar 

  17. T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318 (2008).

    Article  ADS  Google Scholar 

  18. G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 71, 024312 (2005).

    Article  ADS  Google Scholar 

  19. P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82, 054319 (2010).

    Article  ADS  Google Scholar 

  20. G. A. Lalazissis, S. Karatzikos, R. Fossion, D. Pena Arteaga, A. V. Afanasjev, and P. Ring, Phys. Lett. B 671, 36 (2009).

    Article  ADS  Google Scholar 

  21. A. V. Afanasjev, S. E. Agbemava, and A. Gyawali, Phys. Lett. B 782, 533 (2018).

    Article  ADS  Google Scholar 

  22. V. G. Soloviev, Theory of Complex Nuclei (Nauka, Moscow, 1971; Pergamon, Oxford, 1976).

    Google Scholar 

  23. S. E. Agbemava, A. V. Afanasjev, and P. Ring, Phys. Rev. C 93, 044304 (2016).

    Article  ADS  Google Scholar 

  24. S. E. Agbemava and A. V. Afanasjev, Phys. Rev. C 96, 024301 (2017).

    Article  ADS  Google Scholar 

  25. T. Nikšić, N. Paar, D. Vretenar, and P. Ring, Comput. Phys. Commun. 185, 1808 (2014).

    Article  ADS  Google Scholar 

  26. Y. Tian, Z. Y. Ma, and P. Ring, Phys. Lett. B 676, 44 (2009).

    Article  ADS  Google Scholar 

  27. J. Zhao, B.-N. Lu, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C 95, 014320 (2017).

    Article  ADS  Google Scholar 

  28. G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys A 729, 337 (2003). http://amdc.-Lin2p3.fr/masstables/Ame2003/rct7.mas03.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Tarasov.

Additional information

Russian Text © The Author(s), 2019, published in Yadernaya Fizika, 2019, Vol. 82, No. 3, pp. 186–195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuprikov, V.I., Tarasov, V.N. Change in the Shape of Nuclei in the Chains of Krypton, Strontium, Zirconium, Molybdenum, and Ruthenium Isotopes in the Relativistic-Mean-Field Approximation. Phys. Atom. Nuclei 82, 191–200 (2019). https://doi.org/10.1134/S1063778819020108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819020108

Navigation