Skip to main content
Log in

Zeeman Effect at Explosive Nuclide Formation

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Nuclear structure and composition in ultra-strong magnetic fields relevant for heavy-ion collisions, supernovae, andmagnetar crusts are analyzed. For field intensities exceeding 0.1 teratesla (TT) nuclear magnetic response is represented as combined reactivity of valent outer-shell nucleons, exhibits linear regime up to a strength of ~10 TT and exceeds significantly nuclear g factor. The Zeeman effect leads to an increase of binding energies for open shell nuclei and a decrease for closed-shell nuclei. Noticeable enhancement and suppression in a yield of corresponding explosive nucleosynthesis products with antimagic and magic numbers corroborate with observational results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Voronyuk et al. Phys. Rev. C 83, 054911 (2011).

    Article  ADS  Google Scholar 

  2. V. N. Kondratyev, Phys. Rev. Lett. 88, 221101 (2002).

    Article  ADS  Google Scholar 

  3. V. N. Kondratyev, Eur. Phys. J. A 50, 7 (2014); Eur. Phys. Web Conf. 107, 10006 (2016).

    Article  Google Scholar 

  4. D. S. Svinkin; K. Hurley, R. L. Aptekar, S. V. Golenetskii, and D. D. Frederiks, Mon. Not. R. Astron. Soc. 447, 1028 (2015).

    Article  ADS  Google Scholar 

  5. S. Akiyama, C. J. Wheeler, D. L. Meier, and I. Lichtenstadt, Astrophys. J. 584, 954 (2003).

    Article  ADS  Google Scholar 

  6. J. C. Wheeler, D. L. Meier, and J. R. Wilson, Astrophys. J. 568, 807 (2002).

    Article  ADS  Google Scholar 

  7. M. Obergaulinger, M. A. Aloy, and E. Müller, Astron. Astrophys. 450, 1107 (2005).

    Article  ADS  Google Scholar 

  8. S. G. Moiseenko, G. S. Bisnovatyi-Kogan, and N. V. Ardeljan, MNRAS 370, 501 (2006).

    Article  ADS  Google Scholar 

  9. A. Burrows, L. Dessart, E. Livne, C. D. Ott, and J. Murphy, Astrophys. J. 664, 416 (2007)

    Article  ADS  Google Scholar 

  10. T. Takiwaki, K. Kotake, and K. Sato, Astrophys. J. 691, 1360 (2009).

    Article  ADS  Google Scholar 

  11. V. N. Kondratyev and Yu. V. Korovina, JETP Lett. 102, 131 (2015); JNST 1, 550 (2002).

    Article  ADS  Google Scholar 

  12. A. S. Davydov, Theory of the Atomic Nucleus (Moscow, Nauka, 1958).

    Google Scholar 

  13. S. V. Vonsovsky, Magnetism (New York, J. Wiley, 1974).

    Google Scholar 

  14. D. Penaa Arteaga, M. Grasso, E. Khan, and P. Ring, Phys. Rev. C 84, 045806 (2011).

    Article  ADS  Google Scholar 

  15. S. A. Grebenev, A. A. Lutovinov, S. S. Tsygankov, and C. Winkler, Nature 490, 373 (2012).

    Article  ADS  Google Scholar 

  16. T. V. Mishenina, C. Soubiran, O. Bienayme, et al. Astron. Astrophys. 489, 923 (2008).

    Article  ADS  Google Scholar 

  17. V. N. Kondratyev, Phys. Rev. C 69, 038801 (2004).

    Article  ADS  Google Scholar 

  18. V. N. Kondratyev and M. Di Toro, Phys. Rev. C 53, 2176 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kondratyev.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyev, V.N. Zeeman Effect at Explosive Nuclide Formation. Phys. Atom. Nuclei 81, 890–893 (2018). https://doi.org/10.1134/S1063778818060224

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778818060224

Navigation