Skip to main content
Log in

Use of (3He, t) charge-exchange reactions in determining radii of excited states of nuclei

  • Proceedings of LXVI International Conference on Nuclear Spectroscopy and Atomic Nuclei Structure October 11–14, 2016, Sarov, Russia/Nuclei
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A method for determining the radii of excited states of nuclei by means of (3He, t) charge-exchange reactions was proposed. Two versions of a comparison of differential cross sections for (3He, t) reactions were considered. The first relies on a comparison with cross sections for inelastic-scattering processes leading to the formation of isobaric analog states, while the second involves (3He, t) reactions leading to the production of the ground state. The two versions in question yield similar results and make it possible to determine the radius of the first excited state of the 13N nucleus. This state has the excitation energy of E* = 2.37 MeV, lying above the proton-emission threshold. The resulting radius proved to be enhanced in relation to the ground state and is close to the radius of the 3.09-MeV isobaric analog state of the 13С nucleus, which has a neutron halo. This permitted drawing the conclusion that the 13N nucleus in the 2.37-MeV state has a proton halo. The possibility of revealing a proton halo in other states of light nuclei is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and N. Takahashi, Phys. Rev. Lett. 55, 2676 (1985).

    Article  ADS  Google Scholar 

  2. I. Tanihata, H. Savajols, and R. Kanungo, Prog. Part. Nucl. Phys. 68, 215 (2013).

    Article  ADS  Google Scholar 

  3. A. I. Baz, Adv. Phys. 8, 349 (1959)

    Article  ADS  Google Scholar 

  4. A. I. Baz’, Sov. JETP 9, 1256 (1959).

    Google Scholar 

  5. Z. H. Liu, C. J. Lin, H. Q. Zhang, et al., Phys. Rev. C 64, 034312 (2001).

    Article  ADS  Google Scholar 

  6. A. A. Ogloblin, A. N. Danilov, T. L. Belyaeva, A. S. Demyanova, S. A. Goncharov, and W. Trzaska, Phys. At. Nucl. 74, 1548 (2011).

    Article  Google Scholar 

  7. A. A. Ogloblin, A. N. Danilov, T. L. Belyaeva, A. S. Demyanova, S. A. Goncharov, and W. Trzaska, Phys. Rev. C 84, 054601 (2011).

    Article  ADS  Google Scholar 

  8. A. S. Demyanova, A. N. Danilov, S. V. Dmitriev, A. A. Ogloblin, T. L. Belyaeva, N. Burtebaev, P. Drobyshev, S. A. Goncharov, Yu. B. Gurov, P. Heikkinen, R. Julin, S. V. Khlebnikov, V. A. Maslov, N. Nassurlla, Yu. E. Penionzhkevich, Yu. G. Sobolev, et al., EPJWeb Conf. 66, 02027 (2014).

    Article  Google Scholar 

  9. V. D. Efros and J. M. Bang, Eur. Phys. J. A 4, 33 (1999).

    Article  ADS  Google Scholar 

  10. A. S. Demyanova, A. A. Ogloblin, A. N. Danilov, S. V. Dmitriev, S. A. Goncharov, N. Burtebaev, J. Burtebaeva, N. Saduev, T. L. Belyaeva, H. Suzuki, A. Ozawa, Y. Abe, S. Fukuoka, Y. Ishibashi, S. Ito, T. Komatsubara, et al., EPJ Web Conf. 66, 02026 (2014).

    Article  Google Scholar 

  11. A. N. Danilov, T. L. Belyaeva, A. S. Demyanova, S. A. Goncharov, and A. A. Ogloblin, Phys. Rev. C 80, 054603 (2009).

    Article  ADS  Google Scholar 

  12. S. Ohkubo and Y. Hirabayashi, Phys. Rev. C 70, 041602 (2004).

    Article  ADS  Google Scholar 

  13. A. S. Demyanova, A. A. Ogloblin, S. A. Goncharov, and T. L. Belyaeva, Int. J. Mod. Phys. E 17, 2118 (2008).

    Article  ADS  Google Scholar 

  14. T. L. Belyaeva, R. Perez-Torres, A. A. Ogloblin, A. S. Demyanova, S. N. Ershov, and S. A. Goncharov, Phys. Rev. C 90, 064610 (2014).

    Article  ADS  Google Scholar 

  15. T. Minamisono et al., Phys. Rev. Lett. 69, 2058 (1992).

    Article  ADS  Google Scholar 

  16. R. Lewis and A. C. Hayes, Phys. Rev. C 59, 1211 (1999).

    Article  ADS  Google Scholar 

  17. I. Tanihata, J. Phys. G 22, 157 (1996).

    Article  ADS  Google Scholar 

  18. A. V. Lane, Nucl. Phys. 35, 676 (1962).

    Article  Google Scholar 

  19. A. A. Ogloblin, A. S. Demyanova, A. N. Danilov, T. L. Belyaeva, S. A. Goncharov, and W. Trzaska, Phys. At. Nucl. 79, 514 (2016).

    Article  Google Scholar 

  20. R. J. Peterson, Nucl. Phys. A 377, 41 (1982).

    Article  ADS  Google Scholar 

  21. A. S. Demyanova, A. A. Ogloblin, S. N. Ershov, F. A. Gareev, R. S. Kurmanov, E. F. Svinareva, S. A. Goncharov, V. V. Adodin, N. Burtebaev, J. M. Bang, and J. S. Vaagen, Phys. Scr. T 32, 89 (1990).

    Article  ADS  Google Scholar 

  22. A. Ozawa et al., Nucl. Phys. A 608, 63 (1996).

    Article  ADS  Google Scholar 

  23. G. R. Satchler, Introduction to Nuclear Reactions (Macmillan, New York, 1990).

    Book  MATH  Google Scholar 

  24. P. D. Kunz and E. Rost, in Computational Nuclear Physics, Ed. by K. Langanke et al. (Springer, New York, 1993), Vol. 2, p. 88.

    Book  Google Scholar 

  25. C. M. Vincent and H. T. Fortune, Phys. Rev. C 7, 865 (1973).

    Article  ADS  Google Scholar 

  26. A. S. Demyanova, A. A. Ogloblin, A. N. Danilov, T. L. Belyaeva, S. A. Goncharov, and W. Trzaska, JETP Lett. 104, 526 (2016).

    Article  ADS  Google Scholar 

  27. N. Burtebaev, A. Duisebaev, B. A. Duisebaev, and S. B. Sakuta, Phys. At. Nucl. 63, 562 (2000).

    Article  Google Scholar 

  28. R. J. Peterson et al., Phys. Rev. C 24, 826 (1981).

    Article  ADS  Google Scholar 

  29. B. G. Harvey et al., Phys. Rev. 146, 712 (1966).

    Article  ADS  Google Scholar 

  30. A. S. Demyanova, A. A. Ogloblin, A. N. Danilov, S. A. Goncharov, T. L. Belyaeva, et al., EPJWeb Conf. 117, 04012 (2016).

    Article  Google Scholar 

  31. F. Nusslin, Z. Phys. 240, 217 (1970).

    Article  ADS  Google Scholar 

  32. A. N. Danilov, A. S. Demyanova, S. V. Dmitriev, A. A. Ogloblin, T. L. Belyaeva, S. A. Goncharov, Yu. B. Gurov, V. A. Maslov, Yu. G. Sobolev, W. Trzaska, S. V. Khlebnikov, P. Heikkinen, R. Julin, G. P. Tyurin, N. Burtebaev, and T. Zholdybayev, Phys. At. Nucl. 78, 777 (2015).

    Article  Google Scholar 

  33. J.-G. Chen, X.-Z. Cai, H.-Y. Zhang, et al., Chin. Phys. Lett. 20, 1021 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Demyanova.

Additional information

Original Russian Text © A.S. Demyanova, A.A. Ogloblin, S.A. Goncharov, A.N. Danilov, T.L. Belyaeva, W. Trzaska, 2017, published in Yadernaya Fizika, 2017, Vol. 80, No. 5, pp. 427–433.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demyanova, A.S., Ogloblin, A.A., Goncharov, S.A. et al. Use of (3He, t) charge-exchange reactions in determining radii of excited states of nuclei. Phys. Atom. Nuclei 80, 831–837 (2017). https://doi.org/10.1134/S1063778817050064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778817050064

Navigation