Skip to main content
Log in

Recent applications of nuclear track emulsion technique

  • Technologies of Nuclear Materials
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A survey of recent results obtained using the nuclear track emulsion (NTE) technique in low energy applications is given. NTE irradiation with 60 MeV 8He nuclei provides identification of their decays at stopping, evaluation of the possibility of α range spectrometry, and observation of drift of thermalized 8Не atoms. Correlations of α particles studied in 12С → 3α splitting induced by 14.1 MeV neutrons indicate the presence of a superposition of 0+ and 2+ states of the 8Be nucleus in the ground state of 12С. Angular correlations of fragments are studied in boron-enriched NTE, and the prospects of NTE application in radioactivity and nuclear fission research are discussed. It is proposed to use an automated microscope to search for collinear tripartition of heavy nuclei implanted in NTE. Surface irradiation of NTE by a 252Cf source is started. Planar events containing fragment pairs and long range α particles, as well as fragment triples, are studied. NTE samples are calibrated using Kr and Xe ions with an energy of 1.2 and 3 A MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. Powell, P. H. Fowler, and D. H. Perkins, Study of Elementary Particles by the Photographic Method (Pergamon, London, 1959).

    Google Scholar 

  2. W. H. Barkas, Nuclear Research Emulsions (Academic, New York, London, 1963).

    Google Scholar 

  3. Y. Goldschmidt-Cremont, Ann. Rev. Nucl. Sci., 141 (1953).

    Google Scholar 

  4. The BECQUEREL Project. http://becquerel.jinr.ru/.

  5. P. I. Zarubin, Lect. Notes Phys. 875 (3), 51 (2014).

    Article  ADS  Google Scholar 

  6. Slavich Company JSC. http://www.newslavich.com/.

  7. D. A. Artemenkov, A. A. Bezbakh, V. Bradnova, M. S. Golovkov, A. V. Gorshkov, P. I. Zarubin, I. G. Zarubina, G. Kaminski, N. K. Kornegrutsa, S. A. Krupko, K. Z. Mamatkulov, R. R. Kattabekov, V. V. Rusakova, R. S. Slepnev, R. Stanoeva, S. V. Stepantsov, A. S. Fomichev, and V. Chudoba, Phys. Part. Nucl. Lett. 10, 415 (2013).

    Article  Google Scholar 

  8. D. A. Artemenkov et al., Few-Body Syst. 55, 733736 (2014).

    Article  Google Scholar 

  9. P. Zarubin, EPJ Web Conf. 66, 11044 (2014).

    Article  Google Scholar 

  10. R. R. Kattabekov, K. Z. Mamatkulov, S. S. Alikulov, D. A. Artemenkov, R. N. Bekmirzaev, V. Bradnova, P. I. Zarubin, I. G. Zarubina, N. V. Kondratieva, N. K. Kornegrutsa, D. O. Krivenkov, A. I. Malakhov, K. Olimov, N. G. Peresadko, N. G. Polukhina, et al., Phys. At. Nucl. 76, 1219 (2013).

    Article  Google Scholar 

  11. D. A. Artemenkov, V. Bradnova, A. A. Zaitsev, P. I. Zarubin, I. G. Zarubina, R. R. Kattabekov, K. Z. Mamatkulov, and V. V. Rusakova, Phys. At. Nucl. 78, 579 (2015).

    Article  Google Scholar 

  12. D. V. Kamanin and Y. V. Pyatkov, Lect. Notes Phys. 875 (3), 184 (2014).

    ADS  Google Scholar 

  13. K. Z. Mamatkulov et al., Phys. Proc. 74, 59 (2015).

    Article  ADS  Google Scholar 

  14. E. W. Titterton and T. A. Brinkley, Nature 187, 228 (1960).

    Article  ADS  Google Scholar 

  15. M. L. Muga, H. R. Bowman, and S. G. Thompson, Phys. Rev. 121, 271 (1961).

    Article  ADS  Google Scholar 

  16. D. A. Artemenkov, V. Bradnova, A. A. Zaitsev, P. I. Zarubin, I. G. Zarubina, R. R. Kattabekov, N. K. Kornegrutsa, K. Z. Mamatkulov, P. A. Rukoyatkin, V. V. Rusakova, and R. Stanoeva, Phys. At. Nucl. 78, 794 (2015).

    Article  Google Scholar 

  17. F. Ajzenberg-Selove, Nucl. Phys. A 490, 1 (1988); TUNL—Nuclear Data Evaluation Project. http://www.tunl.duke.edu/NuclData/.

    Article  ADS  Google Scholar 

  18. The BECQUEREL Project. http://becquerel. jinr.ru/miscellanea/8He/8He.html.

  19. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM–the Stopping and Range of Ions in Matter. http://srim.org/.

  20. V. M. Bystritsky, V. V. Gerasimov, V. G. Kadyshevsky, A. P. Kobzev, A. R. Krylov, A. A. Nozdrin, V. L. Rapatsky, Yu. N. Rogov, A. B. Sadovsky, A. V. Salamatin, M. G. Sapozhnikov, A. N. Sissakian, V. M. Slepnev, N. I. Zamyatin, and E. V. Zubarev, Phys. Part. Nucl. Lett. 6, 505 (2009).

    Article  Google Scholar 

  21. T. Yamada, Y. Funaki, H. Horiuchi, G. Roepke, P. Schuck, and A. Tohsaki, Lect. Notes Phys. 848 (1), 102 (2012).

    Google Scholar 

  22. Image Processing and Analyses in JAVA. http://rsb.info.nih.gov/ij/.

  23. Microscope HSP-1000. http://www.odz.ujf.cas.cz/ home/resources/microscope-hsp-1000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Zarubin.

Additional information

Original Russian Text © P.I. Zarubin, 2016, published in Yadernaya Fizika i Inzhiniring, 2016, Vol. 7, No. 1, pp. 25–36.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarubin, P.I. Recent applications of nuclear track emulsion technique. Phys. Atom. Nuclei 79, 1525–1535 (2016). https://doi.org/10.1134/S1063778816130093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816130093

Keywords

Navigation