Skip to main content
Log in

Systematic comparison of barriers for heavy-ion fusion calculated on the basis of the double-folding model by employing two versions of nucleon–nucleon interaction

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A systematic calculation of barriers for heavy-ion fusion was performed on the basis of the double-folding model by employing two versions of an effective nucleon–nucleon interaction: M3Y interaction and Migdal interaction. The results of calculations by the Hartree–Fockmethod with the SKX coefficients were taken for nuclear densities. The calculations reveal that the fusion barrier is higher in the case of employing theMigdal interaction than in the case of employing the М3Y interaction. In view of this, the use of the Migdal interaction in describing heavy-ion fusion is questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Zagrebaev, A. Karpov, Y. Aritomo, M. Naumenko, and W. Greiner, Phys. Part. Nucl. 38, 469 (2007).

    Article  Google Scholar 

  2. J. O. Newton et al., Phys. Rev. C 70, 024605 (2004).

    Article  ADS  Google Scholar 

  3. R. A. Kuzyakin et al., Phys. Rev. C 85, 034612 (2012).

    Article  ADS  Google Scholar 

  4. N. Anantaraman et al., Nucl. Phys. A 398, 269 (1983).

    Article  ADS  Google Scholar 

  5. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1983, 2nd ed.; Intersci., New York, 1967, transl. 1st ed.).

    Google Scholar 

  6. Dao T. Khoa, Phys. Rev. C 63, 034007 (2001).

    Article  ADS  Google Scholar 

  7. Ch. Xu, Zh. Ren, and Ya. Guo, Phys. Rev. C 78, 044329 (2008).

    Article  ADS  Google Scholar 

  8. J. M. B. Shorto et al., Phys. Rev. C 78, 064610 (2008).

    Article  ADS  Google Scholar 

  9. M. Ismail and Kh. A. Ramadan, J. Phys. G 26, 1621 (2000).

    Article  ADS  Google Scholar 

  10. M. V. Chushnyakova, R. Bhattacharya, and I. I. Gontchar, Phys. Rev. C 90, 017603 (2014).

    Article  ADS  Google Scholar 

  11. I. I. Gontchar, M. Dasgupta, D. J. Hinde, and J. O. Newton, Phys. At. Nucl. 69, 1428 (2006).

    Article  Google Scholar 

  12. I. I. Gontchar and M. V. Chushnyakova, Comput. Phys. Commun. 181, 168 (2010).

    Article  ADS  Google Scholar 

  13. Dao T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C 56, 954 (1997).

    Article  ADS  Google Scholar 

  14. J. W. Negele and D. Vautherin, Phys. Rev. C 5, 1472 (1972).

    Article  ADS  Google Scholar 

  15. X. Campi and A. Bouyssy, Phys. Lett. B 73, 263 (1978).

    Article  ADS  Google Scholar 

  16. R. A. Kuzyakin, V. V. Sargsyan, G. G. Adamian, and N. V. Antonenko, Phys. At. Nucl. 75, 439 (2012).

    Article  Google Scholar 

  17. N. V. Antonenko et al., Phys. Rev. C 50, 2063 (1994).

    Article  ADS  Google Scholar 

  18. M. J. Rhoades-Brown et al., Z. Phys. A 310, 287 (1983).

    Article  ADS  Google Scholar 

  19. R. Bhattacharya, Nucl. Phys. A 913, 1 (2013).

    Article  ADS  Google Scholar 

  20. I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  21. H. de Vries et al., At. Data Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  22. I. I. Gontchar, R. Bhattacharya, and M. V. Chushnyakova, Phys. Rev. C 89, 034601 (2014).

    Article  ADS  Google Scholar 

  23. M. V. Chushnyakova and I. I. Gontchar, Phys. Rev. C 87, 014614 (2013).

    Article  ADS  Google Scholar 

  24. M. V. Chushnyakova and I. I. Gontchar, Eur. Phys. J. Web Conf. 63, 02008 (2013); 66, 03018 (2014).

    Article  Google Scholar 

  25. I. I. Gontchar and M. V. Chushnyakova, J. Phys. G 43, 045111 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Chushnyakova.

Additional information

Original Russian Text © I.I. Gontchar, M.V. Chushnyakova, 2016, published in Yadernaya Fizika, 2016, Vol. 79, No. 4, pp. 356–361.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gontchar, I.I., Chushnyakova, M.V. Systematic comparison of barriers for heavy-ion fusion calculated on the basis of the double-folding model by employing two versions of nucleon–nucleon interaction. Phys. Atom. Nuclei 79, 543–548 (2016). https://doi.org/10.1134/S1063778816040104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816040104

Navigation