Skip to main content
Log in

Synthesis of functional materials in combustion reactions

  • Promising Structural Materials
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating–reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al2O3, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO2, and manganites, cobaltites, and aluminates of rare earth elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Pechini, US Patent No. 3330697 (1967).

    Google Scholar 

  2. E. C. Grzebielucka, A. S. A. Chinelatto, et al., Ceram. Int. 36, 1737 (2010).

    Article  Google Scholar 

  3. W. Wang et al., Ceram. Int. 33, 459 (2007).

    Article  Google Scholar 

  4. T. Yamaguchi, N. Mukouyama, et al., Ceram. Int. 37, 201 (2011).

    Article  Google Scholar 

  5. M. Marinék and K. Zupan, Ceram. Int. 3, 1075 (2010).

    Google Scholar 

  6. T. Mimani and K. C. Patil, Mater. Phys. Mech. 4, 134 (2001).

    Google Scholar 

  7. A. S. Mukasyan, P. Epstein, and P. Dinka, Proc. Combust. Inst. 31, 789 (2007).

    Google Scholar 

  8. M. D. Lima, R. Bonadimann, M. J. de Andrade, et al., J. Eur. Ceram. Soc. 26, 213 (2006).

    Google Scholar 

  9. R. Ianos and P. Barvinschi, J. Solid State Chem. 183, 491 (2010).

    Article  ADS  Google Scholar 

  10. N. P. Bansal and Z. Zhong, J. Power Sources 158, 148 (2006).

    Article  Google Scholar 

  11. S. V. Chavan, K. T. Pillai, and A. K. Tyagi, Mater. Sci. Eng. B 132, 266 (2006).

    Article  Google Scholar 

  12. K. Deshpande, A. Mukasyan, and A. Varma, J. Am. Ceram. Soc. 86, 1149 (2003).

    Article  Google Scholar 

  13. H. Chander, D. Haranath, V. Shanker, et al., J. Cryst. Growth 271, 307 (2004).

    Article  ADS  Google Scholar 

  14. Z. Yanga, Xu Lib Xu, et al., J. Luminesc. 122–123, 707 (2007).

    Google Scholar 

  15. E. Chinarro, J. R. Jurado, and M. T. Colomer, J. Eur. Ceram. Soc. 27, 3619 (2007).

    Article  Google Scholar 

  16. P. K. Ojha, S. K. Ratha, T. K. Chongdar, et al., Ceram. Int. 36, 561 (2010).

    Article  Google Scholar 

  17. Z.-C. Li, H. Zhang, and B. Bergman, Ceram. Int. 34, 1949 (2008).

    Article  Google Scholar 

  18. T. Liu, Y. Xu, et al., Ceram. Int. 37, 3361 (2011).

    Article  Google Scholar 

  19. A. S. Mukasyan and P. Dinka, J. Adv. Eng. Mater. 9, 653 (2007).

    Article  Google Scholar 

  20. S. T. Aruna and A. S. Mukasyan, Curr. Opin. Solid State Mater. Sci. 12, 45 (2008).

    Google Scholar 

  21. A. Varma, A. S. Rogachev, A. S. Mukasyan, and S. Hwang, Adv. Chem. Eng. 24, 79 (1998).

    Article  Google Scholar 

  22. A. Varma, A. S. Mukasyan, K. Deshpande, et al., Mater. Res. Soc. Symp. Proc. 800, 113 (2003).

    Google Scholar 

  23. A. Varma and A. S. Mukasyan, Korean J. Chem. Eng. 21, 527 (2004).

    Article  Google Scholar 

  24. V. D. Zhuravlev, V. G. Vasil’ev, E. V. Vladimirova, V. G. Shevchenko, I. G. Grigorov, V. G. Bamburov, A. R. Beketov, and M. V. Baranov, Glass Phys. Chem. 36, 506 (2010).

    Article  Google Scholar 

  25. V. D. Zhuravlev, V. G. Bamburov, and A. R. Beketov, Ceram. Int. 39, 1379 (2013).

    Article  Google Scholar 

  26. A. S. Mukasyan, C. Costello, K. P. Sherlock, et al., Separ. Purif. Technol. 25, 117 (2001).

    Article  Google Scholar 

  27. A. Kumar, E. E. Wolf, and A. S. Mukasyan, AIChE J. 57, 2207 (2011). doi: 10.1002/aic.12416.

    Article  Google Scholar 

  28. A. Kumar, E. E. Wolf, and A. S. Mukasyan, AIChE J. 57, 3473 (2011). doi: 10.1002/aic.12537

    Article  Google Scholar 

  29. V. D. Zhuravlev and K. V. Nefedova, J. Altern. Energ. Ekol. 46 (2), 5 (2007).

    Google Scholar 

  30. V. D. Zhuravlev, RF Patent No. 2374037 (2007).

    Google Scholar 

  31. P. K. Ojha, S. K. Rath, T. K. Chongdara, et al., Ceram. Int. 36, 561 (2010).

    Article  Google Scholar 

  32. M. Mazaheri, M. Valefi, Z. R. Hesabi, et al., Ceram. Int. 35, 13 (2009).

    Article  Google Scholar 

  33. C. A. da Silva, F. P. Nielson, N. F. P. Ribeiro, and M. M. V. M. Souza, Ceram. Int. 35, 3441 (2009).

    Article  Google Scholar 

  34. V. D. Zhuravlev and M. U. Sennikov, RU Patent No. 2492157 (2013) [in Russian].

    Google Scholar 

  35. V. D. Zhuravlev, V. V. Kartashov, A. R. Beketov, and V. G. Bamburov, RU Patent No. 2404925 (2010) [in Russian].

    Google Scholar 

  36. A. A. Kurteeva, S. M. Beresnev, D. A. Osinkin, B. L. Kuzin, G. K. Vdovin, V. D. Zhuravlev, N. M. Bogdanovich, D. I. Bronin, A. A. Pankratov, and I. Yu. Yaroslavtsev, Russ. J. Electrochem. 47, 1381 (2011).

    Article  Google Scholar 

  37. D. A. Osinkin, D. I. Bronin, S. M. Beresnev, et al., J. Solid State Electrochem. (2013). doi: 10.1007/ s10008-013-2239-4.

    Google Scholar 

  38. M. B. Kakade, S. Ramanathan, and D. Das, Ceram. Int. 37, 195 (2011).

    Article  Google Scholar 

  39. H. Yang, S. Zhu, and N. Pan, J. Appl. Polym. Sci. 92, 3201 (2004).

    Article  Google Scholar 

  40. X. Ding, Z. Qi, and Y. He, J. Mater. Sci. Lett. 14, 21 (1995).

    Article  Google Scholar 

  41. L. Wang, Zh. Yuan, and T. A. Egerton, Mater. Chem. Phys. 133, 304 (2012).

    Article  Google Scholar 

  42. W. Guo, X. Liu, P. Huo, X. Gao, D. Wu, Z. Lu, and Y. Yan, Appl. Surf. Sci. 258, 6891 (2012).

    Article  ADS  Google Scholar 

  43. N. Enomoto, K. Kawasaki, M. Yoshida, X. Li, M. Uehara, and J. Hojo, Solid State Ion. 151, 171 (2002).

    Article  ADS  Google Scholar 

  44. R. F. de Farias, U. Arnold, L. Martínez, U. Schuchardt, M. J. D. M. Jannini, and C. Airoldi, J. Phys. Chem. Solids 64, 2385 (2003).

    Article  ADS  Google Scholar 

  45. O. Harizanov, A. Harizanova, and T. Ivanova, Solid State Ion. 128, 261 (2000).

    Article  ADS  Google Scholar 

  46. K. Yoshii and H. Abe, J. Solid State Chem. 165, 131 (2002).

    Article  ADS  Google Scholar 

  47. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).

    Article  ADS  Google Scholar 

  48. T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, Phys. Rev. B 71, 224425 (2005).

    Article  ADS  Google Scholar 

  49. B. Lorenz, Y. Q. Wang, and C. W. Chu, Phys. Rev. B 76, 104405 (2007).

    Article  ADS  Google Scholar 

  50. H. W. Brinks, H. Fjellvag, and A. Kjekshus, J. Solid State Chem. 129, 334 (1997).

    Article  ADS  Google Scholar 

  51. K. Uusi-Esko, J. Malm, N. Imamura, H. Yamauchi, and M. Karppinen, Mater. Chem. Phys. 112, 1029 (2008).

    Article  Google Scholar 

  52. Y. Wang, X. Lu, Y. Chen, F. Chi, S. Feng, and X. Liu, J. Solid State Chem. 178, 1317 (2005).

    Article  ADS  Google Scholar 

  53. G. Lalitha and Reddy Venogopal, J. Magn. Magn. Mater. 320, 754 (2008).

    Article  ADS  Google Scholar 

  54. Ya. Zhydachevkii, D. Galaciak, S. Kobyakov, et al., J. Phys.: Condens. Matter 18, 11385 (2006).

    Google Scholar 

  55. Ya. C. Rubinchic, Rare Earth Elements Dual Oxides Compounds (Nauka Tekh., Minsk, 1974) [in Russian].

    Google Scholar 

  56. D. Ravichardan, R. Roy, W. B. White, and S. Erdey, J. Mater. Res. 12, 819 (1997).

    Article  ADS  Google Scholar 

  57. T. Takeda, K. Kato, and S. Kikkawa, J. Ceram. Soc. Jpn. 115, 558 (2007).

    Google Scholar 

  58. P. A. Arsen’ev, L. M. Kovba, H. S. Bagdasarov, et al., Rare Earth Elements Compounds (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  59. V. S. Krylov, I. L. Belova, R. L. Magunov, et al., Izv. Akad. Nauk USSR, Neorg. Mater. 9, 1338 (1973) [in Russian].

    Google Scholar 

  60. A. Pati, S. Dash, S. C. Parida, and V. Venugopal, Thermochem. Acta 481, 7 (2009).

    Article  Google Scholar 

  61. A. U. Kropanev, Cand. Sci. Dissertation (Ural. State Univ., Sverdlovsk, 1981) [in Russian].

    Google Scholar 

  62. A. B. Antunes, O. Pena, C. Moure, V. Gil, and G. Andre, J. Magn. Magn. Mater. 316, e652 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Zhuravlev.

Additional information

Original Russian Text © V.D. Zhuravlev, V.G. Bamburov, L.V. Ermakova, N.I. Lobachevskaya, 2014, published in Yadernaya Fizika i Inzhiniring, 2014, Vol. 5, No. 6, pp. 505–523.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, V.D., Bamburov, V.G., Ermakova, L.V. et al. Synthesis of functional materials in combustion reactions. Phys. Atom. Nuclei 78, 1389–1405 (2015). https://doi.org/10.1134/S1063778815120169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815120169

Keywords

Navigation