Skip to main content
Log in

Properties of true quaternary fission of nuclei with allowance for its multistep and sequential character

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

An analysis of basicmechanisms of binary and ternary fission of nuclei led to the conclusion that true ternary and quaternary fission of nuclei has a sequential two-step (three-step) character, where, at the first step, a fissile nucleus emits a third light particle (third and fourth light particles) under shakeup effects associated with a nonadiabatic character of its collective deformation motion, whereupon the residual nucleus undergoes fission to two fission fragments. Owing to this, the formulas derived earlier for the widths with respect to sequential two- and three-step decays of nuclei in constructing the theory of two-step twoproton decays and multistep decays in chains of genetically related nuclei could be used to describe the relative yields and angular and energy distributions of third and fourth light particles emitted in (α, α), (t, t), and (α, t) pairs upon the true quaternary spontaneous fission of 252Cf and thermal-neutron-induced fission of 235U and 233U target nuclei. Mechanisms that explain a sharp decrease in the yield of particles appearing second in time and entering into the composition of light-particle pairs that originate from true quaternary fission of nuclei in relation to the yields of analogous particles in true ternary fission of nuclei are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Andreev et al., Sov. J. Nucl. Phys. 8, 22 (1969).

    Google Scholar 

  2. S. S. Kapoor et al., in Proceedings of the Symposium on Nuclear Physics and Soild State Physics, Chandigarh, India, 1972, Vol. 15b, p. 107.

    Google Scholar 

  3. S. S. Kataria et al., in Proceedings of the Symposium on Physics and Chemistry of Fission, Rochester, New York, USA, 1973 (IAEA, Vienna, 1974), Vol. 2, p. 389.

    Google Scholar 

  4. A. S. Fomichev et al., Nucl. Instum. Methods Phys. Res. A 384, 519 (1997).

    Article  ADS  Google Scholar 

  5. P. Jesinger et al., in Proceedings of the Symposium on Nuclear Clusters, Rauischholzhausen, Germany, 2002 (EP Systema, Debrecen, 2003), p. 289.

    Google Scholar 

  6. P. Jesinger et al., Eur. Phys. J. A 24, 379 (2005).

    Article  ADS  Google Scholar 

  7. M. Mutterer et al., in Proceedings of the 5th International Conference on Dynamical Aspects of Nuclear Fission, Casta-Papiernicka, Slovak Republic, 2001 (World Sci., Singapore, 2002), p. 191.

    Google Scholar 

  8. S. G. Kadmensky and L. V. Titova, Phys. At. Nucl. 76, 16 (2013).

    Article  Google Scholar 

  9. S. G. Kadmensky, Phys. At. Nucl. 65, 1390 (2002); Phys. At. Nucl. 65, 1785 (2002).

    Article  Google Scholar 

  10. S. G. Kadmensky, Phys. At. Nucl. 66, 1691 (2003).

    Article  Google Scholar 

  11. V. E. Bunakov and S. G. Kadmensky, Phys. At. Nucl. 66, 1846 (2003).

    Article  Google Scholar 

  12. S. G. Kadmensky, Phys. At. Nucl. 67, 170 (2004); Phys. At. Nucl. 67, 241 (2004).

    Article  Google Scholar 

  13. N. Carjan, J. Phys. (Paris) 37, 1279 (1976).

    Article  Google Scholar 

  14. N. Carjan and B. Leroux, Phys. Rev. C 22, 2008 (1980).

    Article  ADS  Google Scholar 

  15. O. Tanimura, and T. Fliessbach, Z. Phys. A 328, 475 (1987).

    ADS  Google Scholar 

  16. S. G. Kadmensky and Yu. V. Ivankov, Phys. At. Nucl. 77, 1019 (2014).

    Article  Google Scholar 

  17. S. G. Kadmensky and Yu. V. Ivankov, Phys. At. Nucl. 77, 1532 (2014).

    Article  Google Scholar 

  18. S. G. Kadmensky and A. O. Bulychev, in Proceedings of the 64th International Conference Nucleus-2014, Minsk, Belarus, 2014, p. 181.

    Google Scholar 

  19. L. V. Grigorenko, Phys. Part. Nucl. 40, 674 (2009).

    Article  Google Scholar 

  20. Experimental Nuclear Physics, Ed. by E. Segre (Wiley, New York, London, 1953), Vol. 2.

  21. A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1969, 1975; Mir, Moscow, 1971, 1977), Vols. 1, 2.

    Google Scholar 

  22. J. R. Nix, Nucl. Phys. A 130, 241 (1969).

    Article  ADS  Google Scholar 

  23. M. Brack et al., Rev.Mod. Phys. 44, 320 (1972).

    Article  ADS  Google Scholar 

  24. S. G. Kadmensky, V. E. Bunakov, and L. V. Titova, Phys. At. Nucl. 78, 662 (2015).

    Article  Google Scholar 

  25. V. A. Rubchenya and S. G. Yavshits,Sov. J. Nucl. Phys. 40, 416 (1984).

    Google Scholar 

  26. S. G. Kadmensky et al., Sov. J. Nucl. Phys. 39, 4 (1984).

    Google Scholar 

  27. I. Halperm, in Proceedings of the Symposium on Physics and Chemistry of Fission (IAEA, Vienna, 1964), p. 369.

    Google Scholar 

  28. M. Mutterer and J. P. Theobald, Nuclear Decay Modes (IOP Publ., Bristol, 1996), Ch. 12.

    Google Scholar 

  29. M. Ya. Barkovskii et al., Preprint No. 1540, LIYad. Fiz. (Leningr. Inst. Yad. Fiz. AN SSSR, Leningrad, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kadmensky.

Additional information

Original Russian Text © S.G. Kadmensky, L.V. Titova, A.O. Bulychev, 2015, published in Yadernaya Fizika, 2015, Vol. 78, No.s. 7–8, pp. 716–724.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadmensky, S.G., Titova, L.V. & Bulychev, A.O. Properties of true quaternary fission of nuclei with allowance for its multistep and sequential character. Phys. Atom. Nuclei 78, 672–679 (2015). https://doi.org/10.1134/S1063778815050117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815050117

Keywords

Navigation