Skip to main content
Log in

Searches for a sterile-neutrino admixture in detecting tritium decays in a proportional counter: New possibilities

  • Elementary Particles and Fields
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

An experiment aimed at searches for an admixture of a sterile neutrino whosemass is 1 to 8 keV via detecting electrons from tritium decay in a proportional counter is proposed. The admixture in question can be discovered by a specific distortion of the energy spectrum of these electrons. For the above masses, the distortion extends over the whole spectrum; therefore, use can bemade of detectors that have a relatively low energy resolution (about 10 to 15%). A classic proportional counter is a simple and natural choice of detector for the decays of a gaseous tritium. The approach that we propose is novel in two respects. On one hand, the proportional counter used is made as a discrete unit in the form of a fully fused quartz tube. This permits a readout of current signals directly from the anode filament and ensures a high stability in the case of long-term measurements. At the same time, the application of state-of-the-art digital data-acquisition methods will make it possible to perform measurements under conditions of high counting rates—up to 106 Hz. As a result, the energy spectrum of electrons from tritium decays that is formed by 1012 counts could be accumulated within about a month. This data sample would make it possible to set an upper limit in the range of 10−3–10−5 on a sterile-neutrino admixture at a confidence level of three standard deviations (3σ) for m s in the range of 1–8 keV, this being one to two orders of magnitude more stringent than present-day limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. N. Abazajian et al., arXiv:1204.5379.

  2. WMAP Collab. ( G. Hinshaw et al.), Astrophys. J. Suppl. 208, 19 (2013); arXiv:1212.5226.

    Article  ADS  Google Scholar 

  3. Y. I. Izotov and T. X. Thuan, Astrophys. J. 710, L67 (2010); arXiv:1001.4440.

    Article  ADS  Google Scholar 

  4. Planck Collab. (P. A. R. Ade et al.), arXiv:1303.5080.

  5. M. Wyman et al., arXiv:1307.7715.

  6. S. Dodelson and L.M. Widrow, Phys. Rev. Lett. 72, 17 (1994); hep-ph/9303287.

    Article  ADS  Google Scholar 

  7. A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Annu. Rev. Nucl. Part. Sci. 59, 191 (2009); arXiv:0901.0011.

    Article  ADS  Google Scholar 

  8. A. Boyarsky et al., Phys. Rev. Lett. 97, 261302 (2006); astro-ph/0603660.

    Article  ADS  Google Scholar 

  9. J. J. Simpson, Phys. Rev. Lett. 54, 1891 (1985).

    Article  ADS  Google Scholar 

  10. A. Hime and J. J. Simpson, Phys. Rev. D 39, 1837 (1989).

    Article  ADS  Google Scholar 

  11. J. J. Simpson and A. Hime, Phys. Rev. D 39, 1825 (1989).

    Article  ADS  Google Scholar 

  12. E. Holzschuh et al., Phys. Lett. B 451, 247 (1999).

    Article  ADS  Google Scholar 

  13. M. Galeazzi et al., Phys. Rev. Lett. 86, 1978 (2001).

    Article  ADS  Google Scholar 

  14. K.-H. Hiddemann et al., J. Phys. G 21, 639 (1995).

    Article  ADS  Google Scholar 

  15. E. Holzschuh et al., Phys. Lett. B 482, 1 (2000).

    Article  ADS  Google Scholar 

  16. K. Schreckenbach et al., Phys. Lett. B 129, 265 (1983).

    Article  ADS  Google Scholar 

  17. M. M. Hindi et al., Phys. Rev. C 58, 2512 (1998).

    Article  ADS  Google Scholar 

  18. M. Trinczek et al., Phys. Rev. Lett. 90, 012501 (2003).

    Article  ADS  Google Scholar 

  19. J. Deutsch et al., Nucl. Phys. A 518, 149 (1990).

    Article  ADS  Google Scholar 

  20. A. I. Belesev et al., JETP Lett. 97, 67 (2013); arXiv:1211.7193.

    Article  ADS  Google Scholar 

  21. C. Kraus et al., Eur. Phys. J. C 73, 2323 (2013); arXiv:1210.4194.

    Article  ADS  Google Scholar 

  22. M. Bahran and G. R. Kalbfleisch, Phys. Lett. B 291, 336 (1992).

    Article  ADS  Google Scholar 

  23. M. Y. Bahran and G.R. Kalbfleisch, Phys. Lett. B 354, 481 (1995).

    Article  ADS  Google Scholar 

  24. D. H.W. Kirkwood et al., Phys. Rev. 74, 497 (1948).

    Article  ADS  Google Scholar 

  25. G. C. Hanna and B. Pontecorvo, Phys. Rev. 75, 983 (1949).

    Article  ADS  Google Scholar 

  26. V. V. Kuz’minov et al., Prib. Tekh. Eksp., No. 4, 86 (1990).

    Google Scholar 

  27. S. Danshin et al., Nucl. Instrum. Methods Phys. Res. A 349, 466 (1994).

    Article  ADS  Google Scholar 

  28. A. I. Berlev, Preprint No. 1189/2007, IYaI RAN (Inst. Nucl. Res., Moscow, 2007).

    Google Scholar 

  29. A. A. Alekseev, A. A. Bergman, L. I. Berlev, et al., Phys. At. Nucl. 73, 1487 (2010).

    Article  Google Scholar 

  30. SAGE Collab. ( D. N. Abdurashitov, E. P. Veretenkin, V. M. Vermul, et al.) J. Exp. Theor. Phys. 95, 181 (2002).

    Article  ADS  Google Scholar 

  31. V. I. Barsanov, Yu. I. Barsanov, A. A. Dzhanelidze, et al., Instrum. Exp. Tech. 49, 454 (2006).

    Article  Google Scholar 

  32. R. E. Shrock, Phys. Lett. B 96, 159 (1980).

    Article  ADS  Google Scholar 

  33. F. V. Tkachov, physics/0604127.

  34. A. V. Lokhov, F. V. Tkachov, and P. S. Trukhanov, Nucl. Instrum. Methods Phys. Res. A 686, 162 (2012); arXiv:1111.4835.

    Article  ADS  Google Scholar 

  35. D. N. Abdurashitov et al., Preprint No. 861/94, IYaI RAN (Inst. Nucl. Res., Moscow, 1994).

    Google Scholar 

  36. D. H. Wilkinson, Nucl. Phys. A 526, 131 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  37. O. V. Kazachenko, private commun.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lokhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdurashitov, D.N., Berlev, A.I., Likhovid, N.A. et al. Searches for a sterile-neutrino admixture in detecting tritium decays in a proportional counter: New possibilities. Phys. Atom. Nuclei 78, 268–280 (2015). https://doi.org/10.1134/S1063778815020027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815020027

Keywords

Navigation