Skip to main content
Log in

Theoretical analysis of the astrophysical S-factor for the capture reaction α + d6Li + γ in the two-body model

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Theoretical estimates for the astrophysical S-factor and the rate of the reaction d(α, γ)6Li were obtained on the basis of the two-body model involving an αd potential that has a simple Gaussian form and which describes correctly S-, P-, and D-wave phase shifts, the binding energy, and the asymptotic normalization coefficient for the S-wave bound state. The wave functions for the bound and continuum channels were calculated with the aid of the highly precise Numerov algorithm. The results for the contributions of the E1 and E2 transition components reveal a good convergence as the upper limit in the effective integrals increases up to 40 fm. The results obtained for the astrophysical S-factor and the rate of the reaction d(α, γ)6Li in the temperature range of 106 KT ≤ 1010 K agree well with the results of the calculations performed by A.M. Mukhamedzhanov and his coauthors [Phys. Rev. C 83, 055805 (2011)] by using the known asymptotic form of the wave function at low energies and a complicated two-body potential at higher energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. D. Serpico et al., J. Cosmol. Astropart. Phys. 0412, 010 (2004).

    Article  ADS  Google Scholar 

  2. P. Mohr et al., Phys. Rev. C 50, 1543 (1994).

    Article  ADS  Google Scholar 

  3. R. G. H. Robertson et al., Phys. Rev. Lett. 47, 1867 (1981).

    Article  ADS  Google Scholar 

  4. J. Kiener et al., Phys. Rev. C 44, 2195 (1991).

    Article  ADS  Google Scholar 

  5. F. Hammache et al., Phys. Rev. C 82, 065803 (2010).

    Article  ADS  Google Scholar 

  6. K. Langanke, Nucl. Phys. A 457, 351 (1986).

    Article  ADS  Google Scholar 

  7. S. Typel, H. H. Wolter, and G. Baur, Nucl. Phys. A 613, 147 (1997).

    Article  ADS  Google Scholar 

  8. A. Kharbach and P. Descouvemont, Phys. Rev. C 58, 1066 (1998).

    Article  ADS  Google Scholar 

  9. S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, Phys. At. Nucl. 58, 579, 788 (1995).

    Google Scholar 

  10. K. M. Nollett, R. B. Wiringa, and R. Shiavilla, Phys. Rev. C 63, 024003 (2001).

    Article  ADS  Google Scholar 

  11. A. M. Mukhamedzhanov, L. D. Blokhintsev, and B. F. Irgaziyev, Phys. Rev. C 83, 055805 (2011).

    Article  ADS  Google Scholar 

  12. L. D. Blokhintsev, V. I. Kukulin, A. A. Sakharuk, et al., Phys. Rev. C 48, 2390 (1993).

    Article  ADS  Google Scholar 

  13. S. B. Dubovichenko, Phys. At. Nucl. 73, 1526 (2010).

    Article  Google Scholar 

  14. S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, Phys. At. Nucl. 57, 733 (1994).

    Google Scholar 

  15. Tao Pang, An Introduction to Computational Physics (Cambridge University Press, 2010).

    MATH  Google Scholar 

  16. B. Jenny et al., Nucl. Phys. A 397, 61 (1983).

    Article  ADS  Google Scholar 

  17. L. C. McIntyre and W. Haeberli, Nucl. Phys. A 91, 382 (1967).

    Article  ADS  Google Scholar 

  18. W. Gruebler et al., Nucl. Phys. A 242, 265 (1975).

    Article  ADS  Google Scholar 

  19. C. Angulo et al., Nucl. Phys. A 656, 3 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  20. W. A. Fowler, G. R. Gaughlan, and B. A. Zimmerman, Annu. Rev. Astron. Astrophys. 13, 69 (1975).

    Article  ADS  Google Scholar 

  21. E. M. Tursunov, D. Baye, and P. Descouvemont, Phys. Rev. C 73, 014303 (2006).

    Article  ADS  Google Scholar 

  22. S. B. Igamov and R. Yarmukhamedov, Nucl. Phys. A 673, 509 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Tursunov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tursunov, E.M., Turakulov, S.A. & Descouvemont, P. Theoretical analysis of the astrophysical S-factor for the capture reaction α + d6Li + γ in the two-body model. Phys. Atom. Nuclei 78, 193–200 (2015). https://doi.org/10.1134/S1063778815010196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815010196

Keywords

Navigation