Skip to main content
Log in

A semiclassical collective response of heated, asymmetric, and rotating nuclei

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The quasiparticle Landau Fermi-liquid and periodic orbit theories are presented for the semi-classical description of collective excitations in nuclei, which are close to one of the main topics of the fruitful activity of S.T. Belyaev. Density-density response functions are studied at low temperatures within the temperature-dependent collisional Fermi-liquid theory in the relaxation time approximation. The isothermal, isolated (static) and adiabatic susceptibilities for nuclear matter show the ergodicity property. Temperature corrections to the response function, viscosity and thermal conductivity coefficients have been derived, also in the long wavelength (hydrodynamic) limit. The relaxation and correlation functions are obtained through the fluctuation-dissipation theorem and their properties are discussed in connection to the static susceptibilities and ergodicity of the Fermi systems. Transport coefficients, such as nuclear friction and inertia as functions of the temperature for the hydrodynamic (heat-pole and first sound) and Fermi surface distortion zero-sound modes are derived within the Fermi-liquid droplet model. They are shown to be in agreement with the semi-microscopical calculations based on the nuclear shell model (SM) for large temperatures. This kinetic approach is extended to the study of the neutron-proton correlations in asymmetric neutron-rich nuclei. The surface symmetry binding-energy constants are presented as functions of the Skyrme-force parameters in the approximation of a sharp-edged proton-neutron asymmetric nucleus and applied to calculations of the isovector giant dipole resonance. The energies, sum rules, and transition densities of these resonances obtained by using analytical expression for these surface constants in terms of the Skyrme-force parameters are in fairly good agreement with the experimental data. An analysis of the experimental data, in particular the specific structure of these resonances in terms of a main, and some satellite peaks, in comparison with our analytical approach and other theoretical semimicroscopical models, might turn out to be of capital importance for a better understanding of the values of the fundamental surface symmetry-energy constant. The semiclassical collective moment of inertia is derived analytically beyond the quantum perturbation approximation of the cranking model for any potential well as a mean field. It is shown that this moment of inertia can be approximated by its rigid-body value for the rotation with a given frequency within the ETF and more general periodic orbit theories in the nearly local long-length approximation. Its semiclassical shell-structure components are derived in terms of the periodic-orbit free-energy shell corrections. An enhancement of the moment of inertia near the symmetrybreaking bifurcation deformations was found. We obtained good agreement between the semiclassical and quantum shell-structure components of the moment of inertia for several critical bifurcation deformations for the completely analytically solved example of the harmonic oscillator mean field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Migdal, The Finite Fermi-System Theory and Properties of Atomic Nuclei (Intersience, New York, 1967; Nauka, Moscow, 1983).

    Google Scholar 

  2. W. D. Myers and W. J. Swiatecki, Ann. Phys. (N.Y.) 55, 395 (1969); Ann. Phys. (N.Y.) 84, 186 (1974).

    ADS  Google Scholar 

  3. M. Brack, J. Damgaard, A. S. Jensen, et al., Rev. Mod. Phys. 44, 320 (1972).

    ADS  Google Scholar 

  4. A. Bohr and B. Mottelson, Nuclear Structure (Benjamin, New York, 1975), Vol. 2.

    Google Scholar 

  5. I. N. Mikhailov, K. Neergard, V. V. Pashkevich, and S. Frauendorf, Sov. J. Part. Nucl. 8, 550 (1977).

    Google Scholar 

  6. S. T. Belyaev and V. G. Zelevinsky, Sov. Phys. Usp. 28, 854 (1985).

    ADS  Google Scholar 

  7. D. R. Inglis, Phys. Rev. 96, 1059 (1954); Phys. Rev. 97, 701 (1955); Phys. Rev. 103, 1786 (1956).

    MATH  ADS  Google Scholar 

  8. A. Bohr and B. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 30(1) (1955).

    Google Scholar 

  9. J. G. Valatin, Proc. R. Soc. London, Ser. A 238, 132 (1956).

    MathSciNet  ADS  Google Scholar 

  10. S. T. Belyaev, Mat. Fys. Medd. Dan. Vid. Selsk. 31(11) (1959).

    Google Scholar 

  11. S. T. Belyaev, Sov. Phys. JETP 13, 470 (1961).

    MATH  Google Scholar 

  12. S. T. Belyaev and V. G. Zelevinsky, Sov. J. Nucl. Phys. 11, 416 (1970); Sov. J. Nucl. Phys. 16, 657 (1972); Sov. J. Nucl. Phys. 17, 269 (1973).

    Google Scholar 

  13. S. T. Belyaev, A. V. Smirnov, S. V. Tolokonnikov, and S. A. Fayans, Sov. J. Nucl. Phys. 45, 783 (1987).

    Google Scholar 

  14. M. Brack, and P. Quentin, Nucl. Phys. A 361, 35 (1981).

    ADS  Google Scholar 

  15. V. V. Pashkevich and S. Frauendorf, Sov. J. Nucl. Phys. 20, 588 (1974).

    Google Scholar 

  16. V. G. Zelevinsky, Sov. J. Nucl. Phys. 22, 565 (1975).

    Google Scholar 

  17. M. Cerkaski, J. Dudek, P. Roznej, et al., Nucl. Phys. A 315, 269 (1979).

    ADS  Google Scholar 

  18. E. R. Marshalek, Phys. Rep. 264, 279 (1996).

    ADS  Google Scholar 

  19. S. T. Belyaev, in Proceedings of the International Symposium on Quasiparticle and Phonon Excitations in Nuclei: in memory of Professor V. Soloviev (1925–1998), RIKENN, Wako, Japan, 4–7 Dec. 1999 (World Sci., Singapore, 2000).

    Google Scholar 

  20. A. V. Afanasjev, D. B. Fossan, G. J. Lane, and I. Ragnarsson, Phys. Rept. 322, 1 (1999).

    ADS  Google Scholar 

  21. S. T. Belyaev, Int. J.Mod. Phys. B 20, 2579 (2006).

    MATH  ADS  Google Scholar 

  22. S. Frauendorf, arXiv: 1209.5816 [nucl-th].

  23. P. J. Siemens and A. S. Jensen, Elements of Nuclei: Many-Body Physics with the Strong Interaction (Addison-Wesley, Redwood, 1987).

    Google Scholar 

  24. H. Hofmann, The Physics of Warm Nuclei with Analogies to Mesoscopic Systems (Oxford Univ. Press, Oxford, 2008).

    Google Scholar 

  25. V. M. Strutinsky and A. S. Tyapin, Sov. Phys. JETP 18, 664 (1964).

    Google Scholar 

  26. V. M. Strutinsky, A. G. Magner, and M. Brack, Z. Phys. A 319, 205 (1984).

    ADS  Google Scholar 

  27. V. M. Strutinsky, A. G. Magner, and V. Yu. Denisov, Z. Phys. A 322, 149 (1985); Sov. J. Nucl. Phys. 42, 690 (1985).

    ADS  Google Scholar 

  28. H. Hofmann, F. A. Ivanyuk, and S. Yamaji, Nucl. Phys. A 598, 187 (1996).

    ADS  Google Scholar 

  29. H. Hofmann, Phys. Rep. 284, 137 (1997).

    ADS  Google Scholar 

  30. F. A. Ivanyuk, H. Hofmann, V. V. Pashkevich, and S. Yamaji, Phys. Rev. C 55, 1730 (1997).

    ADS  Google Scholar 

  31. V. M. Kolomietz, A. G. Magner, and V. A. Plujko, Nucl. Phys. A 545, 99 (1992); Z. Phys. A 345, 131, 137 (1993); Phys. At. Nucl. 56, 209 (1993); Phys. At. Nucl. 55, 1143 (1992).

    ADS  Google Scholar 

  32. A. G. Magner, V. M. Kolomietz, H. Hofmann, and S. Shlomo, Phys. Rev. C 51, 2457 (1995).

    ADS  Google Scholar 

  33. V. M. Kolomietz, A. G. Magner, and S. Shlomo, Phys. Rev. C 73, 024312 (2006).

    ADS  Google Scholar 

  34. L. D. Landau, Sov. Phys. JETP 3, 920 (1957); Sov. Phys. JETP 5, 101 (1958); Sov. Phys. JETP 8, 70 (1959).

    MATH  Google Scholar 

  35. A. A. Abrikosov and I. M. Khalatnikov, Rep. Prog. Phys. 22, 329 (1959).

    ADS  Google Scholar 

  36. D. Pines and P. Noziere, The Theory of Quantum Liquids, Vol. 1 (Benjamin, New York, 1966).

    Google Scholar 

  37. A.G. Magner and V.M. Strutinsky, Z.Phys. A 322, 633 (1985); Sov. J. Nucl. Phys. 44, 591 (1986).

    ADS  Google Scholar 

  38. A.G. Magner, Sov. J. Nucl.Phys. 45, 235 (1987).

    Google Scholar 

  39. A. G. Magner, A. I. Sanzhur, and A. M. Gzhebinsky, Int. J. Mod. Phys. E 18, 885 (2009).

    ADS  Google Scholar 

  40. J. P. Blocki, A. G. Magner, P. Ring, and A. A. Vlasenko, Phys. Rev. C 87, 044304 (2013).

    ADS  Google Scholar 

  41. I. L. Bekharevich and I. M. Khalatnikov, Sov. Phys. JETP 12, 1187 (1961).

    Google Scholar 

  42. Yu. B. Ivanov, Sov. Phys. JETP 52, 549 (1980); Nucl. Phys. A 365, 301 (1981).

    ADS  Google Scholar 

  43. V. Abrosimov, M. Di Toro, and V. Strutinsky, Nucl. Phys. A 562, 41 (1993).

    ADS  Google Scholar 

  44. V. M. Kolomietz, A. G. Magner, V. M. Strutinsky, and S. M. Vydrug-Vlasenko, Nucl. Phys. A 571, 117 (1994).

    ADS  Google Scholar 

  45. V. I. Abrosimov, O. I. Davidovskaja, V. M. Kolomietz, and S. Shlomo, Phys. Rev. C 57, 2342 (1998).

    ADS  Google Scholar 

  46. V. M. Strutinsky, A. G. Magner, and V. Yu. Denisov, Z. Phys. A 315, 301 (1984); Sov. J. Nucl. Phys. 39, 873 (1984).

    ADS  Google Scholar 

  47. V. M. Strutinsky, A. G. Magner, and M. Brack, Z. Phys. A 316, 217 (1984); Izv. Akad. Nauk SSSR, Ser. Fiz. 48, 335 (1984).

    ADS  Google Scholar 

  48. A. G. Magner, V. Yu. Denisov, and V. M. Strutinsky, Bull. Acad. Sci. USSR, Phys. Ser. 50, 196 (1986); A. G. Magner, Sov. J. Nucl. Phys. 45, 978 (1987); A. G. Magner and V. Yu. Denisov, Sov. J. Nucl. Phys. 46, 604 (1987); S. M. Vydrug-Vlasenko and A. G. Magner, Nucl. Phys. A 483, 307 (1988).

    Google Scholar 

  49. V. Yu. Denisov, Sov. J. Nucl. Phys. 43, 28 (1986); 44, 20 (1986).

    Google Scholar 

  50. V. M. Kolomietz and A. G. Magner, Phys. At. Nucl. 63, 1732 (2000).

    Google Scholar 

  51. J. P. Blocki, A. G. Magner, and A. A. Vlasenko, Nucl. Phys. At. Energy 13, 333 (2012).

    Google Scholar 

  52. J. P. Blocki, A. G. Magner, and P. Ring, Phys. Scr. 89, 054019 (2014).

    ADS  Google Scholar 

  53. V. I. Abrosimov and O. I. Davidovskaya, Bull. Russ. Acad. Sci.: Phys. 68, 223 (2004); Ukr. J. Phys. 51, 234 (2006); Nucl. Phys. At. Energy 7 (2), 27 (2006); Nucl. Phys. At. Energy 10, 20 (2009).

    Google Scholar 

  54. V. I. Abrosimov, V. A. Plujko, and O. I. Davidovskaya, AIP Conf. Proc. 769, 1112 (2005).

    ADS  Google Scholar 

  55. J. Sykes and G. A. Brooker, Ann. Phys. (N.Y.) 56, 1 (1970).

    MathSciNet  ADS  Google Scholar 

  56. G. A. Brooker and J. Sykes, Ann. Phys. (N.Y.) 61, 387 (1970).

    MathSciNet  ADS  Google Scholar 

  57. H. Heiselberg, C. J. Pethick, and D. G. Revenhall, Ann. Phys. (N.Y.) 223, 37 (1993).

    ADS  Google Scholar 

  58. G. Baym and C. J. Pethick, Landau Fermi Liquid Theory (Wiley, New York, 1991).

    Google Scholar 

  59. H. Hofmann, F. A. Ivanyuk, and A. G. Magner, Acta Phys. Polon. B 29, 375 (1998).

    ADS  Google Scholar 

  60. W. D. Myers and W. J. Swiatecki, Nucl. Phys. A 336, 267 (1980); Phys. Rev. C 601, 141 (1996).

    ADS  Google Scholar 

  61. W. D. Myers et al., Phys. Rev. C 15, 2032 (1977).

    ADS  Google Scholar 

  62. W. D. Myers, W. J. Swiatecki, and C. S. Wang, Nucl. Phys. A 436, 185 (1985).

    ADS  Google Scholar 

  63. P. Danielewicz, Nucl. Phys. A 727, 233 (2003).

    ADS  Google Scholar 

  64. M. Samyn, S. Gorily, M. Bender, and J. M. Pearson, Phys. Rev. C 70, 044309 (2004).

    ADS  Google Scholar 

  65. P. Danielewicz and J. Lee, Int. J. Mod. Phys. E 18, 892 (2009).

    ADS  Google Scholar 

  66. M. Centelles, X. Roca-Maza, X. Viñas, and M. Warda, Phys. Rev. Lett. 102, 12502 (2009).

    ADS  Google Scholar 

  67. M. Warda, X. Viñas, X. Roca-Maza, and M. Centelles, Phys. Rev. C 81, 054309 (2010).

    ADS  Google Scholar 

  68. M. Centelles, X. Roca-Maza, X. Vinas, and M. Warda, Phys. Rev. C 82, 054314 (2010).

    ADS  Google Scholar 

  69. X. Roca-Maza, M. Centelles, X. Vinas, and M. Warda, Phys. Rev. Lett. 106, 252501 (2011).

    ADS  Google Scholar 

  70. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

    ADS  Google Scholar 

  71. M. A. L. Marques and E. K. U. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004).

    ADS  Google Scholar 

  72. M. Brack, C. Guet, and H.-B. Hakansson, Phys. Rep. 123, 275 (1985).

    ADS  Google Scholar 

  73. M. Brack and R. K. Bhaduri, Semiclassical Physics, rev. ed. (Westview Press, Boulder, 2003).

    MATH  Google Scholar 

  74. E. Chabanat et al., Nucl. Phys. A 627, 710 (1997); Nucl. Phys. A 635, 231 (1998).

    ADS  Google Scholar 

  75. P. Klüpfel, P.-G. Reinhard, T. J. Bürvenich, and J. A. Maruhn, Phys. Rev. C 79, 034310 (2009).

    ADS  Google Scholar 

  76. M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    ADS  Google Scholar 

  77. J. R. Stone and P.-G. Reinhard, Prog. Part. Nucl. Phys. 58, 587 (2007).

    ADS  Google Scholar 

  78. J. Erler, C. J. Horowitz, W. Nazarevich, et al., Phys. Rev. C 87, 044320 (2013); arXiv:1211.6292v1 [nucl-th].

    ADS  Google Scholar 

  79. A. Pastore et al., Phys. Scr. T 154, 014014 (2013).

    ADS  Google Scholar 

  80. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).

    ADS  Google Scholar 

  81. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, New York, Heisenberg, Berlin, 1980).

    Google Scholar 

  82. V. M. Strutinsky, Nucl. Phys. A 95, 420 (1967); Nucl. Phys. A 122, 1 (1968).

    ADS  Google Scholar 

  83. C. Bloch, Phys. Rev. 93, 1094 (1954).

    MATH  ADS  Google Scholar 

  84. R. D. Amado and K. A. Brueckner, Phys. Rev. 115, 778 (1959).

    MathSciNet  MATH  ADS  Google Scholar 

  85. R. M. Rockmore, Phys. Rev. 116, 469 (1959).

    MathSciNet  MATH  ADS  Google Scholar 

  86. M. Brack and B. K. Jennings, Nucl. Phys. A 258, 264 (1976).

    ADS  Google Scholar 

  87. K. Bencheikh, P. Quentin, and J. Bartel, Nucl. Phys. A 571, 518 (1994).

    ADS  Google Scholar 

  88. E. Chabanat, J. Meyer, K. Bencheikh, et al., Phys. Lett. B 325, 13 (1994).

    ADS  Google Scholar 

  89. M. Gutzwiller, J. Math. Phys. 12, 343 (1971); Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).

    ADS  Google Scholar 

  90. R. B. Balian and C. Bloch, Ann. Phys. (N.Y.) 69, 76 (1972).

    MathSciNet  MATH  ADS  Google Scholar 

  91. V. M. Strutinsky, Nukleonika 20, 679 (1975); V. M. Strutinsky and A. G. Magner, Sov. J. Part. Nucl. 7, 138 (1976).

    Google Scholar 

  92. M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. A 349, 101 (1976); Proc. R. Soc. London, Ser. A 356, 375 (1977).

    MathSciNet  ADS  Google Scholar 

  93. S. C. Creagh and R. G. Littlejohn, Phys. Rev. A 44, 836 (1991); J. Phys. A 25, 1643 (1992).

    MathSciNet  ADS  Google Scholar 

  94. A. G. Magner, I. S. Yatsyshyn, K. Arita, and M. Brack, Phys. At. Nucl. 74, 1445 (2011).

    Google Scholar 

  95. A. G. Magner, V. M. Kolomietz, and V. M. Strutinsky, Sov. J. Nucl. Phys. 28, 764 (1978).

    Google Scholar 

  96. A. G. Magner, V. Yu. Denisov, and V. M. Strutinsky, Izv. Akad. Nauk SSSR, Ser. Fiz. 50, 1901 (1986).

    Google Scholar 

  97. M. Brack and J. Roccia, Int. J. Mod. Phys. E 19, 725 (2010).

    ADS  Google Scholar 

  98. V. M. Strutinsky, A. G. Magner, S. R. Ofengenden, and T. Døssing, Z. Phys. A 283, 269 (1977).

    ADS  Google Scholar 

  99. A. G. Magner, Sov. J. Nucl.Phys. 28, 759 (1978).

    Google Scholar 

  100. A. G. Magner, S. N. Fedotkin, K. Arita, et al., Prog. Theor. Phys. 102, 551 (1999).

    MathSciNet  MATH  ADS  Google Scholar 

  101. A. G. Magner, S. N. Fedotkin, K. Arita, et al., Phys. Rev. E 63, 065201(R) (2001).

    ADS  Google Scholar 

  102. A. G. Magner, K. Arita, S. N. Fedotkin, and K. Matsuyanagi, Prog. Theor. Phys. 108, 853 (2002).

    MathSciNet  MATH  ADS  Google Scholar 

  103. A. G. Magner, K. Arita, and S. N. Fedotkin, Prog. Theor. Phys. 115, 523 (2006).

    MATH  ADS  Google Scholar 

  104. A. G. Magner, Nucl. Phys. At. Energy 11, 227 (2010).

    ADS  Google Scholar 

  105. A. G. Magner, A. A. Vlasenko, and K. Arita, Phys. Rev. E 87, 062916 (2013).

    ADS  Google Scholar 

  106. V. M. Kolomietz, A. G. Magner, and V. M. Strutinsky, Sov. J. Nucl. Phys. 29, 758 (1979).

    Google Scholar 

  107. A. G. Magner, V. M. Kolomietz, and V. M. Strutinsky, Izv. Akad. Nauk SSSR, Ser. Fiz. 43, 2408 (1979).

    Google Scholar 

  108. K. Richter, D. Ulmo, and R. A. Jalabert, Phys. Rep. 276, 1 (1996).

    ADS  Google Scholar 

  109. S. Frauendorf, V. M. Kolomietz, A. G. Magner, and A. I. Sanzhur, Phys. Rev. B 58, 5622 (1998).

    ADS  Google Scholar 

  110. M. A. Deleplanque, S. Frauendorf, V. V. Pashkevich, et al., Phys. Rev. C 69, 044309 (2004).

    ADS  Google Scholar 

  111. S. C. Creagh, Ann. Phys. (N.Y.) 248, 60 (1996).

    MathSciNet  MATH  ADS  Google Scholar 

  112. A. G. Magner, A. S. Sitdikov, A. A. Khamzin, et al., Nucl. Phys.At. Energy 10, 239 (2009); A. G. Magner et al., Int. J. Mod. Phys. E 19, 735 (2010); Phys. Atom. Nucl. 73, 1398 (2010).

    Google Scholar 

  113. A. G. Magner, A. S. Sitdikov, A. A. Khamzin, and J. Bartel, Phys. Rev. C 81, 064302 (2010).

    ADS  Google Scholar 

  114. R. Kubo, M. Toda and N. Hashitsume, Statistical Physics II, Non-Equilibrium Statistical Mechanics (Springer, New York, 1985).

    Google Scholar 

  115. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions (Benjamen, London, Amsterdam, Don Mills, Ontario, Sydney, Tokyo, 1975).

    Google Scholar 

  116. W. Brenig, Statistical Theory of Heat, Vol. 1: Nonequilibrium Phenomena (Springer, Berlin, 1989).

    Google Scholar 

  117. S. Ayik and D. Boilley, Phys. Lett. B 276, 263 (1992); Phys. Lett. B 284, 482(E) (1992).

    ADS  Google Scholar 

  118. R. J. Nix and A. J. Sierk, Phys. Rev. C 21, 396 (1980).

    ADS  Google Scholar 

  119. G. Eckart, G. Holzwarth, and J. P. Da Providencia, Nucl. Phys. A 364, 1 (1981).

    ADS  Google Scholar 

  120. A. G. Magner and V. A. Plujko, Sov. J. Nucl. Phys. 51, 53 (1990); Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 877 (1990).

    Google Scholar 

  121. H. Hofmann and A. G. Magner, Phys. Rev. C 68, 014606 (2003).

    ADS  Google Scholar 

  122. K. T. R. Davies, A. J. Sierk, and R. J. Nix, Phys. Rev. C 13, 2385 (1976).

    ADS  Google Scholar 

  123. F. A. Ivanyuk, V. M. Kolomietz, and A. G. Magner, Phys. Rev. C 52, 678 (1995); A. V. Radionov, F. A. Ivanyuk, V. M. Kolomietz, and A. G. Magner, Phys. At. Nucl. 65, 824 (2002).

    ADS  Google Scholar 

  124. J. Speth and A. van derWoude, Rep. Prog. Phys. 44, 719 (1981).

    ADS  Google Scholar 

  125. R.W. Hasse, Nuovo Chim. A 87, 109 (1985).

    ADS  Google Scholar 

  126. J. Blocki et al., Ann. Phys. (N.Y.) 113, 330 (1978).

    ADS  Google Scholar 

  127. J. Blocki, J. Skalski, and W. J. Swiatecki, Nucl. Phys. A 594, 137 (1995); J. Blocki, J.-J. Shi, and W. J. Swiatecki, Nucl. Phys. A 554, 387 (1993); C. Jarzynski and W. J. Swiatecki, Nucl. Phys.A 552, 1 (1993); P. Magierski, J. Skalski, and J. Blocki, Phys. Rev. C 56, 1011 (1997).

    ADS  Google Scholar 

  128. J. P. Blocki, A. G. Magner, and I. S. Yatsyshyn, Nucl. Phys. At. Energy 11, 239 (2010); Int. J. Mod. Phys. E 20, 292 (2011); Int. J. Mod. Phys. E 21, 1250034 (2012).

    Google Scholar 

  129. K.-F. Liu, H. Luo, Z. Ma, et al., Nucl. Phys. A 534, 1 (1991).

    ADS  Google Scholar 

  130. J. M. Eisenberg and W. Greiner, Nuclear Theory, Vol. 1, Nuclear Models Collective and Single-Particle Phenomena (North-Holland, Amsterdam, London, 1970).

    Google Scholar 

  131. V. A. Plujko, R. Capote, and O. M. Gorbachenko, At. Data Nucl. Data Tables 97, 567 (2011); R. Capote et al., Nucl. Data Sheets 110, 3107 (2009); V. A. Plujko, O. M. Gorbachenko, and E. V. Kulich, Int. J. Mod. Phys. E 18, 996 (2009); V. A. Plujko, O. M. Gorbachenko, E. P. Rovenskykh, and V. A. Zheltonozhskii, Nucl. Phys. At. Energy 13, 340 (2012).

    ADS  Google Scholar 

  132. D. Vretenar, N. Paar, P. Ring, and G. A. Lalazissis, Phys. Rev. C 63, 047301 (2001).

    ADS  Google Scholar 

  133. D. Vretenar, N. Paar, P. Ring, and G. A. Lalazissis, Nucl. Phys. A 692, 496 (2001).

    ADS  Google Scholar 

  134. N. Ryezayeva, T. Hartmann, Y. Kalmykov, et al., Phys. Rev. Lett. 89, 272502 (2002).

    ADS  Google Scholar 

  135. A. Repko, P.-G. Reinhard, V. O. Nesterenko, and J. Kvasil, Phys. Rev. C 87, 024305 (2013).

    ADS  Google Scholar 

  136. J. Kvasil, A. Repko, V. O. Nesterenko, et al., Phys. Scr. T 154, 014019 (2013).

    ADS  Google Scholar 

  137. P. Adrich et al., Phys. Rev. Lett. 95, 132501 (2005).

    ADS  Google Scholar 

  138. O. Wieland et al., Phys. Rev. Lett. 102, 092502 (2009).

    ADS  Google Scholar 

  139. A. Voinov et al., Phys. Rev. C 81, 024319 (2010); A. C. Larsen et al., Phys. Rev. C 87, 014319 (2013).

    ADS  Google Scholar 

  140. M. Colonna et al., J. Phys. Conf. Ser. 420, 012104 (2013); arXiv: 1209.1542v1 [nucl-th].

    ADS  Google Scholar 

  141. A. G. Magner, S.M. Vydrug-Vlasenko, and H. Hofmann, Nucl. Phys. A 524, 31 (1991); Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 148 (1990).

    ADS  Google Scholar 

  142. A. G. Magner, A. M. Ghzebinsky, and S. N. Fedotkin, Scientific papers of the Institute for Nuclear Research 1(14), 7 (2005); Phys. At. Nucl. 70, 647 (2007); A. V. Ghzebinsky, A. G. Magner, and S. N. Fedotkin, Nucl. Phys. At. Energy 9 (2), 7 (2008).

    Google Scholar 

  143. P. Bonche, H. Flocard, and P. H. Heenen, Nucl. Phys. A 467, 115 (1987).

    ADS  Google Scholar 

  144. M. Baranger and M. Vénéroni, Ann. Phys. (N.Y.) 114, 123 (1978).

    ADS  Google Scholar 

  145. D. J. Thouless and J. G. Valatin, Nucl. Phys. A 31, 211 (1962).

    MathSciNet  MATH  Google Scholar 

  146. B. Grammaticos and A. Voros, Ann. Phys. (N.Y.) 123, 359 (1979); Ann. Phys. (N.Y.) 129, 153 (1980).

    MathSciNet  ADS  Google Scholar 

  147. C. Bloch, Phys. Rev. 93, 1094 (1954).

    MATH  ADS  Google Scholar 

  148. J. Dabrowski, Phys. Lett. B 59, 132 (1975).

    ADS  Google Scholar 

  149. R. K. Bhaduri and B. K. Jennings, unpublished (1976).

  150. K. Bencheikh, P. Quentin, J. Bartel, and J. Meyer, Nucl. Phys. A 557, 459c (1993).

    ADS  Google Scholar 

  151. J. Bartel, P. Quentin, M. Brack, et al., Nucl. Phys. A 386, 79 (1982).

    ADS  Google Scholar 

  152. S. Cohen, F. Plasil, and W. J. Swiatecki, Ann. Phys. (N.Y.) 82, 557 (1974).

    ADS  Google Scholar 

  153. K. Matsuyanagi, M. Matsuo, T. Nakatsukasa, et al., J. Phys. G 37, 064018 (2010); K. Matsuyanagi, N. Hinohara, and K. Sato, arXiv: 1205.0078v2 [nucl-th].

    ADS  Google Scholar 

  154. N. Hinohara, K. Sato, T. Nakatsukasa, et al., Phys. Rev. C 82, 064313 (2010); N. Hinohara, K. Sato, K. Yoshida, et al., Phys. Rev. C 84, 061302(R) (2011).

    ADS  Google Scholar 

  155. B. Nerlo-Pomorska, K. Pomorski, and J. Bartel, Phys. Rev. C 84, 044310 (2011).

    ADS  Google Scholar 

  156. A.M. Gzhebinsky, A.G. Magner, and A. S. Sitdikov, Nucl. Phys. At. Energy 8(1), 17 (2007).

    Google Scholar 

  157. A. M. Gzhebinsky, A. G. Magner, and S. N. Fedotkin, Phys. Rev. C 76, 064315 (2007).

    ADS  Google Scholar 

  158. J. P. Blocki, A. G. Magner, and I. S. Yatsyshyn, Int. J.Mod. Phys. E 21, 1250034 (2012).

    ADS  Google Scholar 

  159. J. P. Blocki and A. G. Magner, Phys. Scr. T 154, 014006 (2013).

    ADS  Google Scholar 

  160. V. I. Abrosimov, D. M. Brink, A. Delafiore, and F. Matera, Nucl. Phys. A 864, 38 (2011).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Magner.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magner, A.G., Gorpinchenko, D.V. & Bartel, J. A semiclassical collective response of heated, asymmetric, and rotating nuclei. Phys. Atom. Nuclei 77, 1229–1302 (2014). https://doi.org/10.1134/S1063778814090051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778814090051

Keywords

Navigation