Skip to main content
Log in

Finite-size effects in the Gross-Neveu model with allowance for isospin and baryon chemical potentials

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The properties of the (1 + 1)-dimensional massless Gross-Neveu model were studied for a compactified space S 1, as well as with allowance for nonzero values of the baryon (µ) and isospin (µ I ) chemical potentials. Our investigation was performed in the limit of a large number of fermion colors, N c . It is shown that, for L(case of an unbounded volume), the pion-condensation phase characterized by zero quark density is formed at any nonzero value of µ I and a small value of µ. For any finite value of L (case of a bounded volume), the phase portrait of the model contains a pion-condensation phase where the quark density is nonzero. Thus, finite dimensions of the system being considered may serve as a factor that facilitates the formation of a pion-condensation phase in quark matter with a nonzero baryon density. At the same time, the phase where chiral symmetry is broken may exist only at very large values of L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).

    Article  ADS  Google Scholar 

  2. D. Ebert, K. G. Klimenko, M. A. Vdovichenko, and A. S. Vshivtsev, Phys. Rev. D. 61, 025005 (2000); D. Ebert and K. G. Klimenko, Nucl. Phys. A 728, 203 (2003).

    Article  ADS  Google Scholar 

  3. H. J. Warringa, D. Boer, and J. O. Andersen, Phys. Rev. D 72, 014015 (2005).

    Article  ADS  Google Scholar 

  4. V. Ch. Zhukovsky, V. V. Khudyakov, K. G. Klimenko, and D. Ebert, JETP Lett. 74, 523 (2001); D. Blaschke, D. Ebert, K. G. Klimenko, et al., Phys. Rev. D 70, 014006 (2004); T. Brauner, Phys. Rev. D 77, 096006 (2008); T. Fujihara, D. Kimura, T. Inagaki, and A. Kvinikhidze, Phys. Rev. D 79, 096008 (2009).

    Article  ADS  Google Scholar 

  5. E. J. Ferrer, V. de la Incera, and C. Manuel, Nucl. Phys. B 747, 88 (2006); E. J. Ferrer and V. de la Incera, Phys. Rev. D 76, 045011 (2007).

    Article  ADS  Google Scholar 

  6. D. T. Son and M. A. Stephanov, Phys. At. Nucl. 64, 834 (2001); M. Loewe and C. Villavicencio, Phys. Rev. D 67, 074034 (2003); A. Barducci, R. Casalbuoni, G. Pettini, and L. Ravagli, Phys. Rev. D 69, 096004 (2004); L. He, M. Jin, and P. Zhuang, Phys. Rev. D 71, 116001 (2005); E. E. Svanes and J. O. Andersen, Nucl. Phys. A 857, 16 (2011).

    Article  Google Scholar 

  7. D. Ebert and K. G. Klimenko, J. Phys. G 32, 599 (2006).

    Article  ADS  Google Scholar 

  8. H. Abuki, M. Ciminale, R. Gatto, et al., Phys. Rev. D 78, 014002 (2008); H. Abuki, R. Anglani, R. Gatto, et al., Phys. Rev. D 78, 034034 (2008).

    Article  ADS  Google Scholar 

  9. T. Inagaki, T. Muta, and S. D. Odintsov, Prog. Theor. Phys. Suppl. 127, 93 (1997).

    Article  ADS  Google Scholar 

  10. G. Miele and P. Vitale, Nucl. Phys. B 494, 365 (1997); D. K. Kim and K. G. Klimenko, J. Phys. A 31, 5565 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. A. S. Vshivtsev, A. K. Klimenko, and K. G. Klimenko, Phys. At. Nucl. 61, 479 (1998); A. S. Vshivtsev, M. A. Vdovichenko, and K. G. Klimenko, J. Exp. Theor. Phys. 87, 229 (1998); E. J. Ferrer, V. P. Gusynin, and V. de la Incera, Phys. Lett. B 455, 217 (1999).

    Google Scholar 

  12. L. F. Palhares, E. S. Fraga, and T. Kodama, J. Phys. G 37, 094031 (2010); B. Klein, J. Braun, and B.-J. Schaefer, PoS LATTICE2010, 193 (2010).

    Article  ADS  Google Scholar 

  13. D. Ebert, A. V. Tyukov, and V. C. Zhukovsky, Phys. Rev. D 76, 064029 (2007); Phys. Rev. D 80, 085019 (2009).

    Article  ADS  Google Scholar 

  14. D. Ebert and K. G. Klimenko, Phys. Rev. D 82, 025018 (2010).

    Article  ADS  Google Scholar 

  15. D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).

    Article  ADS  Google Scholar 

  16. U. Wolff, Phys. Lett. B 157, 303 (1985); K. G. Klimenko, Theor. Math. Phys. 75, 487 (1988).

    Article  ADS  Google Scholar 

  17. A. Chodos, H. Minakata, F. Cooper, et al., Phys. Rev. D 61, 045011 (2000).

    Article  ADS  Google Scholar 

  18. V. Schon and M. Thies, Phys. Rev. D 62, 096002 (2000).

    Article  ADS  Google Scholar 

  19. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966); S. Coleman, Commun.Math. Phys. 31, 259 (1973).

    Article  ADS  Google Scholar 

  20. L. M. Abreu, A. P. C. Malbouisson, and J.M. C. Malbouisson, Europhys. Lett. 90, 11001 (2010).

    Article  ADS  Google Scholar 

  21. D. Ebert, K. G. Klimenko, A. V. Tyukov, and V. Ch. Zhukovsky, Phys. Rev. D 78, 045008 (2008).

    Article  ADS  Google Scholar 

  22. D. Ebert and K. G. Klimenko, Phys. Rev. D 80, 125013 (2009); V. Ch. Zhukovsky, K. G. Klimenko, and T. G. Khundjua, Moscow Univ. Phys. Bull. 65, 21 (2010).

    Article  ADS  Google Scholar 

  23. S. K. Kim, W. Namgung, K. S. Soh, and J. H. Yee, Phys. Rev. D 36, 3172 (1987); D. Y. Song and J. K. Kim, Phys. Rev. D 41, 3165 (1990); A. S. Vshivtsev, A. G. Kisun’ko, K. G. Klimenko, and D. V. Peregudov, Russ. Phys. J. 41, 113 (1998); M. A. Vdovichenko and A. K. Klimenko, JETP Lett. 68, 460 (1998).

    Article  ADS  Google Scholar 

  24. D. Ebert, K. G. Klimenko, A. V. Tyukov, and V. Ch. Zhukovsky, Eur. Phys. J. C 58, 57 (2008).

    Article  ADS  Google Scholar 

  25. D. Ebert, N. V. Gubina, K. G. Klimenko, S. G. Kurbanov, and V. Ch. Zhukovsky, Phys. Rev. D 84, 025004 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ch. Zhukovsky.

Additional information

Original Russian Text © V.Ch. Zhukovsky, K.G. Klimenko, T.G. Khunjua, D. Ebert, 2014, published in Yadernaya Fizika, 2014, Vol. 77, No. 6, pp. 839–847.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, V.C., Klimenko, K.G., Khunjua, T.G. et al. Finite-size effects in the Gross-Neveu model with allowance for isospin and baryon chemical potentials. Phys. Atom. Nuclei 77, 795–803 (2014). https://doi.org/10.1134/S1063778814060155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778814060155

Keywords

Navigation