Skip to main content
Log in

Spin and Valley Effects on the Quantum Phase Transition in Two Dimensions

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Using several independent methods, we find that the metal-insulator transition occurs in the strongly-interacting two-valley two-dimensional electron system in ultra-high mobility SiGe/Si/SiGe quantum wells in zero magnetic field. The transition survives in this system in parallel magnetic fields strong enough to completely polarize the electrons’ spins, thus making the electron system “spinless.” In both cases, the resistivity on the metallic side near the transition increases with decreasing temperature, reaches a maximum at a temperature Tmax, and then decreases. The decrease reaches more than an order of magnitude in zero magnetic field. The value of Tmax in zero magnetic field is found to be close to the renormalized Fermi temperature. However, rather than increasing along with the Fermi temperature, the value Tmax decreases appreciably for spinless electrons in spin-polarizing magnetic fields. The observed behavior of Tmax cannot be described by existing theories. The results indicate the spin-related origin of the effect. At the same time, the low-temperature resistivity drop in both spin-unpolarized and spinless electron systems is described quantitatively by the dynamical mean-field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Behnia, Nat. Nanotechnol. 7, 488 (2012).

    Article  ADS  Google Scholar 

  2. Z. Zhu, A. Collaudin, B. Fauqué, W. Kang, and K. Behnia, Nat. Phys. 8, 89 (2012).

    Article  Google Scholar 

  3. J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, Nat. Rev. Mater. 1, 16055 (2016).

    Article  ADS  Google Scholar 

  4. Z. Zhu, J. Wang, H. Zuo, B. Fauqué, R. D. McDonald, Y. Fuseya, and K. Behnia, Nat. Commun. 8, 15297 (2017).

    Article  ADS  Google Scholar 

  5. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  6. A. Punnoose and A. M. Finkel’stein, Phys. Rev. Lett. 88, 016802 (2001).

  7. A. Punnoose and A. M. Finkel’stein, Science (Washington, DC, U. S.) 310, 289 (2005).

    Article  ADS  Google Scholar 

  8. G. Fleury and X. Waintal, Phys. Rev. Lett. 101, 226803 (2008).

  9. T. N. Zavaritskaya and E. I. Zavaritskaya, JETP Lett. 45, 609 (1987).

    ADS  Google Scholar 

  10. S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M. Pudalov, and M. D’Iorio, Phys. Rev. B 50, 8039 (1994).

    Article  ADS  Google Scholar 

  11. S. V. Kravchenko, W. E. Mason, G. E. Bowker, J. E. Furneaux, V. M. Pudalov, and M. D’Iorio, Phys. Rev. B 51, 7038 (1995).

    Article  ADS  Google Scholar 

  12. D. Popović, A. B. Fowler, and S. Washburn, Phys. Rev. Lett. 79, 1543 (1997).

    Article  ADS  Google Scholar 

  13. A. A. Shashkin and S. V. Kravchenko, Appl. Sci. 9, 1169 (2019).

    Article  Google Scholar 

  14. A. A. Shashkin and S. V. Kravchenko, Ann. Phys. 435, 168542 (2021).

  15. M. Y. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S.‑H. Huang, C. W. Liu, and S. V. Kravchenko, Appl. Phys. Lett. 106, 092102 (2015).

  16. M. Y. Melnikov, V. T. Dolgopolov, A. A. Shashkin, S.‑H. Huang, C. W. Liu, and S. V. Kravchenko, J. Appl. Phys. 122, 224301 (2017).

  17. Y. Hanein, U. Meirav, D. Shahar, C. C. Li, D. C. Tsui, and H. Shtrikman, Phys. Rev. Lett. 80, 1288 (1998).

    Article  ADS  Google Scholar 

  18. P. Brussarski, S. Li, S. V. Kravchenko, A. A. Shashkin, and M. P. Sarachik, Nat. Commun. 9, 3803 (2018).

    Article  ADS  Google Scholar 

  19. A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. B 66, 073303 (2002).

  20. A. Mokashi, S. Li, B. Wen, S. V. Kravchenko, A. A. Shashkin, V. T. Dolgopolov, and M. P. Sarachik, Phys. Rev. Lett. 109, 096405 (2012).

  21. M. Y. Melnikov, A. A. Shashkin, V. T. Dolgopolov, A. Y. X. Zhu, S. V. Kravchenko, S.-H. Huang, and C. W. Liu, Phys. Rev. B 99, 081106(R) (2019).

  22. D. G. Polyakov and B. I. Shklovskii, Phys. Rev. B 48, 11167 (1993).

    Article  ADS  Google Scholar 

  23. A. A. Shashkin, V. T. Dolgopolov, and G. V. Kravchenko, Phys. Rev. B 49, 14486 (1994).

    Article  ADS  Google Scholar 

  24. A. A. Shashkin, S. V. Kravchenko, and T. M. Klapwijk, Phys. Rev. Lett. 87, 266402 (2001).

  25. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  26. A. A. Shashkin, A. A. Kapustin, E. V. Deviatov, V. T. Dolgopolov, and Z. D. Kvon, Phys. Rev. B 76, 241302 (2007).

  27. M. Y. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S.‑H. Huang, C. W. Liu, A. Y. X. Zhu, and S. V. Kravchenko, Phys. Rev. B 101, 045302 (2020).

  28. T. Okamoto, K. Hosoya, S. Kawaji, and A. Yagi, Phys. Rev. Lett. 82, 3875 (1999).

    Article  ADS  Google Scholar 

  29. S. A. Vitkalov, H. Zheng, K. M. Mertes, M. P. Sarachik, and T. M. Klapwijk, Phys. Rev. Lett. 85, 2164 (2000).

    Article  ADS  Google Scholar 

  30. X. P. A. Gao, G. S. Boebinger, A. P. Mills, Jr., A. P. Ramirez, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 73, 241315(R) (2006).

  31. V. T. Dolgopolov, A. A. Shashkin, and S. V. Kravchenko, Phys. Rev. B 96, 075307 (2017).

  32. A. M. Finkel’stein, Sov. Phys. JETP 57, 97 (1983).

    ADS  Google Scholar 

  33. A. M. Finkel’stein, Z. Phys. B 56, 189 (1984).

    Article  ADS  Google Scholar 

  34. C. Castellani, C. di Castro, P. A. Lee, and M. Ma, Phys. Rev. B 30, 527 (1984).

    Article  ADS  Google Scholar 

  35. A. Punnoose, A. M. Finkel’stein, A. Mokashi, and S. V. Kravchenko, Phys. Rev. B 82, 201308 (R) (2010).

  36. S. Anissimova, S. V. Kravchenko, A. Punnoose, A. M. Finkel’stein, and T. M. Klapwijk, Nat. Phys. 3, 707 (2007).

    Article  Google Scholar 

  37. A. Camjayi, K. Haule, V. Dobrosavljević, and G. Kotliar, Nat. Phys. 4, 932 (2008).

    Article  Google Scholar 

  38. M. M. Radonjić, D. Tanasković, V. Dobrosavljević, K. Haule, and G. Kotliar, Phys. Rev. B 85, 085133 (2012).

  39. V. Dobrosavljević and D. Tanasković, in Strongly Correlated Electrons in Two Dimensions, Ed. by S. V. Kravchenko (Pan Stanford, Singapore, 2017), chap. 1, p. 1.

    Google Scholar 

  40. A. A. Shashkin, M. Y. Melnikov, V. T. Dolgopolov, M. M. Radonjić, V. Dobrosavljević, S.-H. Huang, C. W. Liu, A. Y. X. Zhu, and S. V. Kravchenko, Phys. Rev. B 102, 081119(R) (2020).

  41. B. Spivak, Phys. Rev. B 67, 125205 (2003).

  42. B. Spivak and S. A. Kivelson, Phys. Rev. B 70, 155114 (2004).

  43. B. Spivak and S. A. Kivelson, Ann. Phys. 321, 2071 (2006).

    Article  ADS  Google Scholar 

  44. A. A. Shashkin, M. Y. Melnikov, V. T. Dolgopolov, M. M. Radonjić, V. Dobrosavljević, S.-H. Huang, C. W. Liu, A. Y. X. Zhu, and S. V. Kravchenko, Sci. Rep. 12, 5080 (2022).

    Article  ADS  Google Scholar 

  45. M. Y. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S.‑H. Huang, C. W. Liu, and S. V. Kravchenko, Sci. Rep. 7, 14539 (2017).

    Article  ADS  Google Scholar 

  46. A. A. Shashkin, S. Anissimova, M. R. Sakr, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. Lett. 96, 036403 (2006).

  47. O. Prus, Y. Yaish, M. Reznikov, U. Sivan, and V. Pudalov, Phys. Rev. B 67, 205407 (2003).

  48. V. T. Dolgopolov and A. Gold, Phys. Rev. Lett. 89, 129701 (2002).

  49. A. Gold and V. T. Dolgopolov, J. Phys.: Condens. Matter 14, 7091 (2002).

    ADS  Google Scholar 

  50. A. A. Shashkin, Phys. Usp. 48, 129 (2005).

    Article  ADS  Google Scholar 

  51. N. Teneh, A. Y. Kuntsevich, V. M. Pudalov, and M. Reznikov, Phys. Rev. Lett. 109, 226403 (2012).

  52. V. M. Pudalov, A. Y. Kuntsevich, M. E. Gershenson, I. S. Burmistrov, and M. Reznikov, Phys. Rev. B 98, 155109 (2018).

  53. S. V. Kravchenko and M. P. Sarachik, Rep. Prog. Phys. 67, 1 (2004).

    Article  ADS  Google Scholar 

  54. T. M. Lu, W. Pan, D. C. Tsui, P. C. Liu, Z. Zhang, and Y. H. Xie, Phys. Rev. Lett. 107, 126403 (2011).

Download references

Funding

A.A.S. was supported by RSF grant no. 22-22-00333. S.V.K. was supported by NSF grant no. 1904024.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Shashkin or S. V. Kravchenko.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

This article was prepared for the special issue of Journal of Experimental and Theoretical Physics dedicated to the 95th birthday of Professor E.I. Rashba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashkin, A.A., Kravchenko, S.V. Spin and Valley Effects on the Quantum Phase Transition in Two Dimensions. J. Exp. Theor. Phys. 135, 432–439 (2022). https://doi.org/10.1134/S1063776122100119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122100119

Navigation