Skip to main content
Log in

Holographic Description of the Dissipative Model of Universe with Curvature

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the accelerated expansion of the late-time universe in the Friedmann–Robertson–Walker metric with nonzero curvature, applying a holographic principle based on a generalized holographic dark energy model introduced by Nojiri and Odintsov (2005, 2006). We describe the evolution of the universe using a generalized equation of state in the presence of a viscous fluid. Solutions of the gravitational equation of motions are obtained in explicit form for a constant value of the thermodynamic parameter, and for various forms of the bulk viscosity. We calculate analytic expressions for infrared cut-offs in terms of the particle horizon, and derive the energy conservation law in the holographic picture. We show that the inclusion of nonzero curvature in the Friedmann equation leads to the appearance of additional singularities of type Big Rip in the Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E.Groom, et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  3. K. Bamba, S. Capozzielo, S. Nojiri, and S. D. Odintsov, Astrophys. Space Sci. 342, 155 (2012).

    Article  ADS  Google Scholar 

  4. S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59144 (2011).

    Article  Google Scholar 

  5. S. Nojiri and S. D. Odintsov, Phys. Lett. B 639, 144 (2006).

    Article  ADS  Google Scholar 

  6. S. Nojiri and S. D. Odintsov, Phys. Rev. D 72, 144 (2005).

    Article  Google Scholar 

  7. I. Brevik, S. Nojiri, S. D. Odintsov, and D. Saez-Gomez, Eur. Phys. J. C 69, 563 (2010).

    Article  ADS  Google Scholar 

  8. I. Brevik, E. Elizalde, S. Nojiri, and S. D. Odintsov, Phys. Rev. D 84, 103508 (2011).

  9. S. Nojiri, S. D. Odintsov, and S. Tsujikawa, Phys. Rev. D 71, 063004 (2005).

  10. I. Brevik, R. Myrzakulov, S. Nojiri, and S. D. Odintsov, Phys. Rev. D 86, 063007 (2012).

  11. M. Li, Phys. Lett. B 603, 1 (2004); arXiv: hep-th/0403127.

    Article  ADS  Google Scholar 

  12. S. Nojiri and S. D. Odintsov, Gen. Relativ. Grav. 38, 1285 (2006); arXiv: hep-th/0506212.

  13. S. Nojiri and S. D. Odintsov, Eur. Phys. J.C 77, 528 (2017).

    Article  ADS  Google Scholar 

  14. S. Nojiri, S. D. Odintsov, and P. Tanmoy, Phys. Lett. B 825, 136844 (2022).

  15. S. Nojiri, S. D. Odintsov, and P. Tanmoy, Symmetry 13, 928 (2022).

    Article  ADS  Google Scholar 

  16. S. Nojiri, S. D. Odintsov, V. K. Oikonomou, and P. Tanmoy, Phys. Rev. D 102, 023540 (2020).

  17. K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov, Astrophys. Space. Sci. 342, 155 (2012).

    Article  ADS  Google Scholar 

  18. S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Phys. Rep. 692, 1 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Wang, Y. Wang and M. Li, Phys. Rep. 696, 1 (2017); arXiv: 1612.00345 [astro-ph.CO]; S. Wang, Y. Wang, and M. Li, Phys. Rep. 696, 198 (2017).

  20. J. Lu, E. N. Saridakis, M. R. Setare and L. Xu, J. Cosmol. Astropart. Phys. 1003, 031 (2010); arXiv: 0912.0923 [astro-ph.CO].

  21. X. Zhang and F. Q. Wu, Phys. Rev. D 72, 0435 (2005); arXiv: astro-ph/0506310.

  22. M. Li, X. D. Li, S. Wang, and X. Zhang, J. Cosmol. Astropart. Phys. 0906, 036 (2009); arXiv: 0904.0928 [astro-ph.CO].

  23. Q. G. Huang and Y. G. Gong, J. Cosmol. Astropart. Phys. 0408, 006 (2004); arXiv: astro-ph/0403590.

  24. B. Wang, E. Abdalla, and R. K. Su, Phys. Lett. B 611, 21 (2005); arXiv: hep-th/0404057.

    Article  ADS  Google Scholar 

  25. Planck Collab., Astron. Astrophys. 641, A1 (2020); arXiv: 1807.06205 [astro-ph.CO].

    Article  Google Scholar 

  26. E. di Valentino, A. Melchiorri, and J. Silk, Nat. Astron. 4, 196 (2020).

    Article  ADS  Google Scholar 

  27. W. Handley, Phys. Rev. D 103, L041301 (2021).

  28. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Article  ADS  Google Scholar 

  29. S. Myrzakul, R. Myrzakulov, and L. Sebastiani, Astrophys. Space Sci. 350, 845 (2014).

    Article  ADS  Google Scholar 

  30. S. Capozziello, V. F. Cardone, E. Elizalde, S. Nojiri, and S. D. Odintsov, Phys. Rev. D 73, 043512 (2006).

  31. A. V. Astashenok and A. S. Tepliakov, arXiv: 1911.01422v1 [gr-qc] (2019).

Download references

Funding

This work was supported by Russian Foundation for Basic Research; project no. 20-52-05009 (A. V. T.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Brevik or A. V. Timoshkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brevik, I., Timoshkin, A.V. Holographic Description of the Dissipative Model of Universe with Curvature. J. Exp. Theor. Phys. 135, 320–323 (2022). https://doi.org/10.1134/S1063776122090023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122090023

Navigation