Skip to main content
Log in

Problem of Increasing the Operating Frequency in Cherenkov Plasma Sources of Electromagnetic Radiation

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze the possibility of increasing the operating frequency of available plasma Cherenkov microwave emitters operating on relativistic high-density electron beams. We consider high- and low-frequency surface waves of a high-density nonmagnetized tubular plasma in a waveguide and determine conditions for their pumping by electron beams. The coefficients of spatial amplification of surface waves in the regimes of one-particle and collective Cherenkov effects are calculated. Nonlinear equation of spatial enhancement of waves are derived, and the efficiencies of surface wave amplification are calculated. It is shown that an increase in the operating frequency of operating plasma emitters by an order of magnitude is quite feasible and can be attained by increasing only the density of the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Notes

  1. It is known [18, 22] that the instability and amplification occur only in the case of resonance of a plasma wave with a slow beam wave.

  2. For a very high electron beam density, the factor of closeness of the frequencies of the high- and low-frequency surface waves can become decisive. In this case, the expansion of the left-hand side of dispersion equation (28) to within the terms linear in δk is insufficient. A more complex analysis is required, which will be given in a separate publication.

REFERENCES

  1. P. S. Strelkov, Phys. Usp. 62, 465 (2019).

    Article  ADS  Google Scholar 

  2. M. V. Kuzelev, A. A. Rukhadze, and P. S. Strelkov, Plasma Relativistic Microwave Electronics (Lenand, Moscow, 2018).

    MATH  Google Scholar 

  3. A. B. Buleyko, N. G. Gusein-zade, and O. T. Loza, Phys. Wave Phenom. 26, 317 (2018).

    Article  ADS  Google Scholar 

  4. D. K. Ul’yanov, R. V. Baranov, O. T. Loza, S. E. Ernyleva, and I. L. Bogdankevich, Tech. Phys. 58, 1503 (2013).

    Article  Google Scholar 

  5. P. S. Strelkov, I. E. Ivanov, E. D. Dias Mikhailova, and D. V. Shumeiko, Plasma Phys. Rep. 47, 269 (2021).

    Article  ADS  Google Scholar 

  6. A. B. Buleyko, A. V. Ponomarev, O. T. Loza, D. K. Ulyanov, and S. E. Andreev, Phys. Plasmas 28, 023303 (2021).

  7. A. B. Buleyko, A. V. Ponomarev, O. T. Loza, D. K. Ulyanov, K. A. Sharypov, S. A. Shunailov, and M. I. Yalandin, Phys. Plasmas 28, 023304 (2021).

  8. I. L. Bogdankevich, V. O. Litvin, and O. T. Loza, Kr. Soobshch. Fiz. 43, 19 (2016).

    Google Scholar 

  9. S. E. Ernyleva and O. T. Loza, Phys. Wave Phenom. 25, 56 (2017).

    Article  ADS  Google Scholar 

  10. V. O. Litvin and O. T. Loza, Phys. Wave Phenom. 25, 52 (2017).

    Article  ADS  Google Scholar 

  11. M. V. Kuzelev and A. A. Rukhadze, Electrodynamics of Dense Electron Beams in Plasma (Lenand, Moscow, 2018) [in Russian].

    Google Scholar 

  12. M. V. Kuzelev, Plasma Phys. Rep. 28, 501 (2002).

    Article  ADS  Google Scholar 

  13. I. N. Kartashov, M. V. Kuzelev, and A. A. Rukhadze, Plasma Phys. Rep. 35, 169 (2009).

    Article  ADS  Google Scholar 

  14. I. N. Kartashov and M. V. Kuzelev, J. Exp. Theor. Phys. 129, 298 (2019).

    Article  ADS  Google Scholar 

  15. I. N. Kartashov and M. V. Kuzelev, J. Exp. Theor. Phys. 131, 645 (2020).

    Article  ADS  Google Scholar 

  16. A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1988) [in Russian].

    Google Scholar 

  17. M. V. Kuzelev and A. A. Rukhadze, Tr. IOFAN im. A. M. Prokhorova 72, 3 (2016).

    Google Scholar 

  18. M. V. Kuzelev and A. A. Rukhadze, Sov. Phys. Usp. 30, 507 (1987).

    Article  ADS  Google Scholar 

  19. I. L. Bogandkevich, S. E. Andreev, N. G. Gusein-zade, and D. K. Ulyanov, J. Russ. Laser Res. 40, 435 (2019).

    Article  Google Scholar 

  20. S. E. Andreev, I. L. Bogdankevich, N. G. Gusein-zade, and D. K. Ul’yanov, Plasma Phys. Rep. 45, 674 (2019).

    Article  ADS  Google Scholar 

  21. V. L. Ginzburg, Theoretical Physics and Astrophysics (Nauka, Moscow, 1981; Elsevier, Amsterdam, 1979).

  22. M. V. Nezlin, Physics of Intense Beams in Plasmas (Energoizdat, Moscow, 1982; IOP, Bristol, 1993).

  23. M. V. Kuzelev and A. A. Rukhadze, Methods of Wave Theory in Dispersive Media (Nauka, Moscow, 2007; World Scientific, Singapore, 2009).

  24. A. A. Ivanov, Physics of Highly Nonequilibrium Plasma (Atomizdat, Moscow, 1977) [in Russian].

    Google Scholar 

  25. Yu. V. Bobylev and M. V. Kuzelev, Nonlinear Phenomena in Resonant Interactions of Electron Beams with Plasma (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  26. R. I. Kovtun and A. A. Rukhadze, Sov. Phys. JETP 31, 915 (1970).

    ADS  Google Scholar 

  27. V. D. Shapiro and V. I. Shevchenko, Sov. Phys. JETP 33, 555 (1971).

    ADS  Google Scholar 

  28. Yu. V. Bobylev, M. V. Kuzelev, and A. A. Rukhadze, J. Commun. Technol. Electron. 47, 149 (2002).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to O.T. Loza, who initiated theoretical investigations, for fruitful discussions and his interest in this research.

Funding

This study was performed under the contract no. 313/1689-D from 16.09.2019 with the State Corporation Rosatom.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. N. Kartashov or M. V. Kuzelev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartashov, I.N., Kuzelev, M.V. Problem of Increasing the Operating Frequency in Cherenkov Plasma Sources of Electromagnetic Radiation. J. Exp. Theor. Phys. 134, 235–248 (2022). https://doi.org/10.1134/S1063776122020054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122020054

Navigation