Skip to main content
Log in

On the Breakup Reaction in Three-Particle Coulomb Systems with Application to the Description of Dissociative Recombination and Charge-Exchange Processes in the Antiproton Physics

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new approach is proposed to the description of the breakup reaction in systems of three charged quantum particles in the presence of Coulomb pair attraction potentials. The analytic asymptotic form of the wavefunction at infinity in the configuration space is assumed to be known. For the first time, a simplified asymptotic form associated with the separation of the main contributions generated by an infinite set of pair asymptotic scattering channel is proposed. The approach proposed here appears as fundamental for describing the breakup reaction in multiparticle systems. The possibility of application of the approach developed here to the description of dissociative recombination and charge-exchange processes in experiments on accumulation of antiatoms is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The complete set of the domains will be described in the next section.

REFERENCES

  1. L. D. Faddeev, Mathematical Aspects of the Three-Body Problem of the Quantum Scattering Theory (Daniel Davey and Co., Jerusalem, 1965), p. 114.

    MATH  Google Scholar 

  2. S. P. Merkur’ev and L. D. Faddeev, Quantum Scattering Theory for Several Particle Systems (Kluwer, Dordrecht, 1993; Nauka, Moscow, 1985).

  3. S. P. Merkur’ev, Sov. J. Nucl. Phys. 24, 150 (1976).

    Google Scholar 

  4. S. P. Merkur’ev, Sov. J. Theor. Math. Phys. 32, 680 (1977).

    Article  Google Scholar 

  5. I. Bray and A. T. Stelbovics, Phys. Rev. Lett. 69, 53 (1992).

    Article  ADS  Google Scholar 

  6. I. Bray and A. T. Stelbovics, Phys. Rev. A 48, 4787 (1993).

    Article  ADS  Google Scholar 

  7. A. S. Kadyrov, I. Bray, A. M. Mukhamedzhanov, and A. T. Stelbovics, Ann. Phys. 324, 1516 (2009).

    Article  ADS  Google Scholar 

  8. A. S. Kadyrov, A. M. Mukhamedzhanov, A. T. Stelbovics, et al., Phys. Rev. A 68, 022703 (2003).

    Article  ADS  Google Scholar 

  9. A. M. Budylin, Ya. Yu. Koptelov, S. B. Levin, and S. V. Sokolov, arXiv: 1810.06056 [quant-ph] (2018).

  10. M. Gaudin and B. Derrida, J. Phys. 36, 1183 (1975).

    Article  Google Scholar 

  11. V. S. Buslaev, S. P. Merkur’ev, and S. P. Salikov, in Problems of Mathematical Physics (LGU, Leningrad, 1979), Vol. 9, p. 14 [in Russian].

    MATH  Google Scholar 

  12. V. S. Buslaev, S. P. Merkur’ev, and S. P. Salikov, Zap. Nauch. Sem. LOMI 84, 16 (1979).

    Google Scholar 

  13. V. A. Fock, Vestn. Leningr. Univ., No. 4, 5 (1947);

  14. Electromagnetic Diffraction and Propagation Problems (Sov. Radio, Moscow, 1970; Pergamon, Oxford, 1965).

  15. V. S. Buslaev and S. B. Levin, Algebra Anal. 22 (3), 60 (2010).

    Google Scholar 

  16. V. S. Buslaev and S. B. Levin, Funkts. Anal. Pril. 46 (2), 83 (2012).

    Google Scholar 

  17. S. B. Levin, Mat. Zam. 108, 469 (2020).

    Article  Google Scholar 

  18. S. B. Levin, Zap. Nauch. Sem. POMI 451, 79 (2016).

    Google Scholar 

  19. T. Wolz, C. Malbrunot, M. Vieille-Grosjean, and D. Comparat, Phys. Rev. A 101, 043412 (2020).

    Article  ADS  Google Scholar 

  20. A. M. Budylin, Ya. Yu. Koptelov, and S. B. Levin, J. Math. Sci. 238, 601 (2019).

    MathSciNet  Google Scholar 

  21. E. O. Alt and A. M. Mukhamedzhanov, Phys. Rev. A 47, 2004 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Tennyson, Phys. Rep. 491, 29 (2010).

    Article  ADS  Google Scholar 

  23. F. Tricomi, Ann. Mat. Pura Appl. 28, 263 (1949).

    Article  MathSciNet  Google Scholar 

  24. M. Brauner, J. S. Briggs, and H. Klar, J. Phys. B 22, 2265 (1989).

    Article  ADS  Google Scholar 

  25. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products (Fizmatgiz, Moscow, 1963; Academic, New York, 1980).

  26. I. M. Gel’fand and G. E. Shilov, Generalized Functions. 1. Properties and Operations (Academic, New York, 1968; Fizmatgiz, Moscow, 1959).

  27. N. McLachlan, Theory and Application of Mathieu Functions (Clarendon, Oxford, 1947).

    MATH  Google Scholar 

  28. V. S. Buslaev, S. B. Levin, P. Neittaannmäki, and T. Ojala, J. Phys. A 43, 285205 (2010).

    Article  MathSciNet  Google Scholar 

  29. V. S. Buslaev, Ya. Yu. Koptelov, S. B. Levin, and D. A. Strygina, Phys. At. Nucl. 76, 208 (2013).

    Article  Google Scholar 

  30. W. A. Bertsche, E. Butler, M. Charlton, and N. Madsen, J. Phys. B 48, 232001 (2015).

    Article  ADS  Google Scholar 

  31. M. Ahmadi, B. X. R. Alves, C. J. Baker, et al., Nat. Commun. 8, 681 (2017).

    Article  ADS  Google Scholar 

  32. N. Kuroda, S. Ulmer, D. J. Murtagh, et al., Nat. Commun. 5, 3089 (2014).

    Article  ADS  Google Scholar 

  33. G. Gabrielse, N. S. Bowden, P. Oxley, et al., Phys. Rev. Lett. 89, 233401 (2002).

    Article  ADS  Google Scholar 

  34. D. Krasnicky, G. Testera, and N. Zurlo, J. Phys. B 52, 115202 (2019).

    Article  ADS  Google Scholar 

  35. D. Krasnicky, R. Caravita, C. Canali, and G. Testera, Phys. Rev. A 94, 022714 (2016).

    Article  ADS  Google Scholar 

  36. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Sci., Singapore, 1988).

  37. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 17-11-01003-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Levin.

Additional information

Translated by N. Wadhwa

APPENDIX

APPENDIX

1.1 Determination of Kernel φn(x, \({\mathbf{\hat {k}}}\)) of Generating Integral

Let us consider eigenfunction \({{\tilde {\psi }}_{c}}\)(x, \({\mathbf{\hat {k}}}\)) of absolutely continuous spectrum of the Coulomb two-particle Schrödinger operator, which has been determined in standard manner to within normalization ((normalization factor is assumed to be equal to unity),

$${{\tilde {\psi }}_{c}}({\mathbf{x}},{\mathbf{k}}) = {{e}^{{i\langle {\mathbf{k}},{\mathbf{x}}\rangle }}}\Phi ( - i\gamma ,1,ikx(1 - \langle {\mathbf{\hat {k}}},{\mathbf{\hat {x}}}\rangle )),$$
(60)

and perform its partial analysis (decomposition in spherical functions). In the case when the function is invariant to rotation of the coordinate system (in this case, the angular dependence is contained in scalar product 〈\({\mathbf{\hat {k}}}\), \({\mathbf{\hat {x}}}\)〉), such analysis is equivalent to the expansion in the Legendre polynomials [35].

To perform such an expansion, we can use Kummer transform (9.212.1) [24]

$$\Phi (a,c,z) = {{e}^{z}}\Phi (c - a,c, - z),$$

which allows us to write expression (60) in form

$${{\tilde {\psi }}_{c}}({\mathbf{x}},{\mathbf{k}}) = {{e}^{{ikx}}}\Phi (1 + i\gamma ,1, - ikx(1 - t)),$$
(61)

where t = 〈\({\mathbf{\hat {k}}}\), \({\mathbf{\hat {x}}}\)〉. The angular dependence is now concentrated only in the confluent hypergeometric function. Let us expand it into a series in orthogonal Legendre polynomials Pl. In accordance, for example, with relation (8.904) [24], this expansion takes form

$$\Phi (1 + i\gamma ,1, - ikx(1 - t))\, = \,\sum\limits_{l = 0}^\infty {(2l + 1){{\Phi }_{l}}(k,x){{P}_{l}}(t).} $$
(62)

Here, Φl(k, x) are the particle components of function Φ(1 + iγ, 1, –ikx(1 – t)), which are calculated as follows in accordance with the orthogonality conditions for the Legendre polynomials:

$${{\Phi }_{l}}(k,x) = \frac{1}{2}\int\limits_{ - 1}^1 {dt\Phi (1 + i\gamma ,1, - ikx(1 - t)){{P}_{l}}(t).} $$
(63)

For evaluating the integral in this expression, we can use the hypergeometrical expansion

$$\begin{gathered} \Phi (a,1,b(1 - t)) = \sum\limits_{j = 0}^\infty {\frac{{{{{(a)}}_{j}}}}{{{{{(j!)}}^{2}}}}{{b}^{j}}{{{(1 - t)}}^{j}}} , \\ a = 1 + i\gamma ,\quad b = - ikx,\quad {{(a)}_{j}} = \frac{{\Gamma (a + j)}}{{\Gamma (a)}}, \\ \end{gathered} $$
(64)

in terms of which

$${{\Phi }_{l}}(k,x) = \frac{1}{2}\sum\limits_{j = 0}^\infty {\frac{{{{{(a)}}_{j}}}}{{{{{(j!)}}^{2}}}}{{b}^{j}}\int\limits_{ - 1}^1 {dt{{{(1 - t)}}^{j}}{{P}_{l}}(t).} } $$
(65)

Performing the substitution of variable s2 = (1 – t))/2 in the integral, we can evaluate it explicitly and obtain a new hypergeometrical expansion that leads to the following limiting relation for the partial component:

$$\begin{gathered} {{\Phi }_{l}}(k,x) = \frac{{{{{( - 1)}}^{l}}}}{{\Gamma (l + 2)}}\mathop {\lim }\limits_{u \to - m} \frac{1}{{\Gamma (u)}} \\ \times {{\,}_{2}}{{F}_{2}}(a,1;u,l + 2;2b),\quad m = l - 1, \\ \end{gathered} $$
(66)

where 2F2 is the hypergeometrical function. Let us now use relation

$$\begin{gathered} \mathop {\lim }\limits_{u \to - m} {{\frac{1}{{\Gamma (u)}}}_{2}}{{F}_{2}}(A,B;u,D;z) \\ = \frac{{{{{(A)}}_{{m + 1}}}{{{(B)}}_{{m + 1}}}}}{{{{{(D)}}_{{m + 1}}}}}\frac{{{{z}^{{m + 1}}}}}{{(m + 1)!}} \\ \times {{\,}_{2}}{{F}_{2}}(A + m + 1,B + m + 1;m + 2,D + m + 1;z), \\ \end{gathered} $$
(67)

where

$$A = a,\quad B = 1,\quad m = l - 1,\quad D = l + 2,\quad z = 2b.$$

Substituting relation (67) into (66), we obtain the final expression for the partial component:

$$\begin{gathered} {{\Phi }_{l}}(k,x) \\ = \frac{{\Gamma (i\gamma + l + 1)}}{{\Gamma (i\gamma + 1)\Gamma (2l + 2)}}{{(2ikx)}^{l}}\Phi (i\gamma \, + \,l\, + \,1,2l\, + \,2, - 2ikx). \\ \end{gathered} $$
(68)

Substituting the resulting expression into expansion (61), (62) for the continuous spectrum eigenfunction of the Coulomb two-particle Schrödinger operator, we get

$$\begin{gathered} {{{\tilde {\psi }}}_{c}}({\mathbf{x}},{\mathbf{k}}) = {{e}^{{ikx}}}\sum\limits_{l = 0}^\infty {(2l + 1)\frac{{\Gamma (i\gamma + l + 1)}}{{\Gamma (i\gamma + 1)\Gamma (2l + 2)}}{{{(2ikx)}}^{l}}} \\ \, \times \Phi (i\gamma + l + 1,2l + 2, - 2ikx){{P}_{l}}(t). \\ \end{gathered} $$
(69)

Let us now consider the analytical continuation of the function constructed here to the upper half-plane of complex plane k for

$$k = {{k}_{n}} = i\frac{{{\text{|}}\alpha {\text{|}}}}{{2n}},\quad \alpha < 0,$$
$$i\gamma = i{{\left. {\frac{\alpha }{{2k}}} \right|}_{{k = {{k}_{n}}}}} = i\frac{\alpha }{{2{{k}_{n}}}} = - n,\quad n = 1,2,3,...$$

Here, \(k_{n}^{2}\) = –|α|/4n2 is the energy of the two-particle bound state corresponding to principal quantum number n. In this case, expression (69) takes form

$$\begin{gathered} {{{\tilde {\psi }}}_{c}}({\mathbf{x}},{{{\mathbf{k}}}_{n}}) = \exp \left( { - \frac{{{\text{|}}\alpha {\text{|}}}}{{2n}}x} \right) \\ \times {{\sum\limits_{l = 0}^\infty {{{\beta }_{{nl}}}\frac{{2l + 1}}{{\Gamma (2l + 2)}}\left( { - \frac{{{\text{|}}\alpha {\text{|}}}}{n}x} \right)} }^{l}} \\ \times \,\Phi \left( { - n + l + 1,2l + 2,\frac{{{\text{|}}\alpha {\text{|}}}}{n}x} \right){{P}_{l}}(t). \\ \end{gathered} $$
(70)

Here, vector kn is interpreted as a vector with the direction coinciding with the direction of initial vector k (\({{{\mathbf{\hat {k}}}}_{n}}\) = \({\mathbf{\hat {k}}}\)) and with the length assuming a purely imaginary value in the upper half-plane of complex plane k (kn = i|α|/2n). Here, coefficient βnl is defined as

$${{\beta }_{{nl}}} = (1 - n)(2 - n)...(l - n).$$
(71)

It should be noted that in accordance with this relation, coefficient βnl vanishes for ln. Therefore, expression (70) turns out to be a finite sum of terms and can be written in form

$$\begin{gathered} {{{\tilde {\psi }}}_{c}}({\mathbf{x}},{{{\mathbf{k}}}_{n}}) = \exp \left( { - \frac{{{\text{|}}\alpha {\text{|}}}}{{2n}}x} \right) \\ \times \,\Phi \left( {1 - n,1,\frac{{{\text{|}}\alpha {\text{|}}}}{{2n}}x(1 - \langle {\mathbf{\hat {k}}},{\mathbf{\hat {x}}}\rangle )} \right) \\ = 4\pi \exp \left( { - \frac{{{\text{|}}\alpha {\text{|}}}}{{2n}}x} \right)\sum\limits_{l = 0}^{n - 1} {\sum\limits_{m = - l}^l {{{\beta }_{{nl}}}\frac{1}{{(2l + 1)!}}} } \\ \times {{\left( { - \frac{{{\text{|}}\alpha {\text{|}}}}{n}} \right)}^{l}}{{x}^{l}}\Phi \left( { - n + l + 1,2l + 2,\frac{{{\text{|}}\alpha {\text{|}}}}{n}x} \right)Y_{l}^{m}({\mathbf{\hat {x}}})Y_{l}^{m}{\text{*}}({\mathbf{\hat {k}}}), \\ \end{gathered} $$
(72)

where \(Y_{l}^{m}\) are the corresponding spherical functions. This equality holds by virtue of the theorem of summation of spherical harmonics (5.17.9) [35],

$$\frac{{2l + 1}}{{4\pi }}{{P}_{l}}(\langle {\mathbf{\hat {k}}},{\mathbf{\hat {x}}}\rangle ) = \sum\limits_{m = - l}^l {Y_{l}^{m}({\mathbf{\hat {x}}})Y_{l}^{m}{\text{*}}({\mathbf{\hat {k}}})} .$$

Finally, we introduce function

$${{\varphi }_{n}}({\mathbf{x}},{\mathbf{\hat {k}}}) \equiv {{\tilde {\psi }}_{c}}({\mathbf{x}},{{{\mathbf{k}}}_{n}})$$
(73)

in accordance with expression (72). We have defined the function with partial components coinciding with the Coulomb radial functions of the discrete spectrum to within normalization [36],

$${{R}_{{nl}}} = {{\rho }^{l}}{{e}^{{ - \rho /2}}}\Phi ( - n + l + 1,2l + 2,\rho ),$$
$$l = 0,1,2,...,n - 1$$

for a fixed principal quantum number n.

Integrating function φn over d\({\mathbf{\hat {k}}}\) on a unit sphere with a certain smooth function \(\hat {a}\)(\({\mathbf{\hat {k}}}\)), we obtain a standard expansion of form

$$\int\limits_{{{\mathbb{S}}^{2}}}^{} {{{\varphi }_{n}}({\mathbf{x}},{\mathbf{\hat {k}}})\hat {a}({\mathbf{\hat {k}}})d{\mathbf{\hat {k}}}} = \sum\limits_{l = 0}^{n - 1} {\sum\limits_{m = - l}^l {{{D}_{{nlm}}}{{R}_{{nl}}}(x)Y_{l}^{m}({\mathbf{\hat {x}}})} } $$
(74)

in the complete set of Coulomb paired states of the discrete spectrum, which correspond to a fixed quantum number n. In this case, the set of amplitudes Dnlm is completely determined by the analytic form of function \(\hat {a}\)(\({\mathbf{\hat {k}}}\)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budylin, A.M., Koptelov, Y.Y. & Levin, S.B. On the Breakup Reaction in Three-Particle Coulomb Systems with Application to the Description of Dissociative Recombination and Charge-Exchange Processes in the Antiproton Physics. J. Exp. Theor. Phys. 133, 313–331 (2021). https://doi.org/10.1134/S1063776121090107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121090107

Navigation