Skip to main content
Log in

Phase Slips, Dislocations, Half-Integer Vortices, Two-Fluid Hydrodynamics, and the Chiral Anomaly in Charge and Spin Density Waves

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

This brief review recalls some chapters in theory of sliding incommensurate density waves which may have appeared after inspirations from studies of Dzyaloshinskii and collaborations with him. First we address the spin density waves which rich order parameter allows for an unusual object of a complex topological nature: a half-integer dislocation combined with a semi-vortex of the staggered magnetization. It becomes energetically preferable with respect to an ordinary dislocation due to the high Coulomb energy at low concentration of carriers. Generation of these objects should form a sequence of π-phase slips in accordance with experimental doubling of the phase-slips rate. Next, we revise the commonly employed TDGL approach which is shown to suffer from a violation of the charge conservation law resulting in nonphysical generation of particles which is particularly pronounced for electronic vortices in the course of their nucleation or motion. The suggested consistent theory exploits the chiral transformations taking into account the principle contribution of the fermionic chiral anomaly to the effective action. The derived equations clarify partitions of charges, currents, and rigidity among subsystems of condensed and normal carriers and the gluing electric field. Being non-analytical with respect to the order parameter, contrarily the conventional TDGL type, the resulting equations still allow for a numerical modeling of transient processes related to space- and spatiotemporal vorticity in DWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4

Similar content being viewed by others

REFERENCES

  1. S. A. Brazovskii, I. E. Dzyaloshinskii, and N. N. Kirova, Sov. Phys. JETP 54, 1209 (1981).

    Google Scholar 

  2. S. A. Brazovskii and I. E. Dzyaloshinskii, Sov. Phys. JETP 44, 1233 (1976).

    ADS  Google Scholar 

  3. S. A. Brazovskii, I. E. Dzyaloshinskii, and S. P. Obukhov, Sov. Phys. JETP 45, 814 (1977).

    ADS  Google Scholar 

  4. S. Brazovskii and N. Kirova, Sov. Sci. Rev. A 5, 99 (1984).

    Google Scholar 

  5. S. Brazovskii, in Advances in Theoretical Physics: Landau Memorial Conference, AIP Conf. Proc. 1134, 74 (2009).

    Google Scholar 

  6. I. Dzyaloshinskii, Nobel Symp. 24, 143 (1973).

    Google Scholar 

  7. S. A. Brazovskii, I. E. Dzyaloshinskii, and I. M. Krichever, Sov. Phys. JETP 56, 212 (1982).

    Google Scholar 

  8. S. A. Brazovskii, I. E. Dzyaloshinskii, and I. M. Krichever, Phys. Lett. A 91, 40 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  9. I. E. Dzyaloshinskii and I. M. Krichever, Sov. Phys. JETP 56, 908 (1982).

    Google Scholar 

  10. I. E. Dzyaloshinskii and I. M. Krichever, Sov. Phys. JETP 58, 1031 (1983).

    Google Scholar 

  11. N. Kirova and S. Brazovskii, J. Phys. IV 9, Pr10-119 (1999).

    Google Scholar 

  12. N. Kirova and S. Brazovskii, J. Phys. IV 10, Pr3-183 (2000).

    Google Scholar 

  13. I. E. Dzyaloshinskii, JETP Lett. 25, 98 (1977).

    ADS  Google Scholar 

  14. S. Brazovskii and N. Kirova, J. Phys. IV 9, Pr10-139 (1999).

    Google Scholar 

  15. S. Brazovskii and N. Kirova, Ann. Phys. 403, 184 (2019).

    Article  ADS  Google Scholar 

  16. S. Brazovskii and N. Kirova, J. Exp. Theor. Phys. 129, 659 (2019).

    Article  ADS  Google Scholar 

  17. G. E. Volovik and V. P. Mineev, JETP Lett. 24, 561 (1976).

    ADS  Google Scholar 

  18. M. C. Cross and W. F. Brinkman, J. Low Temp. Phys. 27, 683 (1977).

    Article  ADS  Google Scholar 

  19. I. A. Lukyanchuk and M. E. Zhitomirsky, Supercond. Rev. 1, 207 (1995).

    Google Scholar 

  20. G. Volovik, Proc. Natl. Acad. Sci. U. S. A. 97, 2431 (2000).

    Article  ADS  Google Scholar 

  21. L. Radzihovsky and A. Vishwanath, Phys. Rev. Lett. 103, 010404 (2009).

    Article  ADS  Google Scholar 

  22. S. Brazovskii, Phys. B (Amsterdam, Neth.) 404, 482 (2009).

  23. Y. G. Rubo, Phys. Rev. Lett. 99, 106401 (2007).

    Article  ADS  Google Scholar 

  24. V. P. Mineev, Low Temp. Phys. 39, 1056 (2013).

    Article  Google Scholar 

  25. S. I. Anisimov and I. E. Dzyaloshinskii, Sov. Phys. JETP 31, 773 (1970).

    Article  Google Scholar 

  26. I. E. Dzyaloshinskii and G. E. Volovik, Ann. Phys. 125, 67 (1980).

    Article  ADS  Google Scholar 

  27. P. Monceau, Adv. Phys. 61, 325 (2012).

    Article  ADS  Google Scholar 

  28. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).

    Article  ADS  Google Scholar 

  29. G. Grüner, Rev. Mod. Phys. 66, 1 (1994).

    Article  ADS  Google Scholar 

  30. Charge Density Waves in Solids, Ed. by L. Gor’kov and G. Grüner (Elsevier Science, Amsterdam, 1990).

    Google Scholar 

  31. P. Karpov and S. Brazovskii, Phys. Rev. E 99, 022114 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Brazovskii, J. Supercond. Nov. Magn. 20, 489 (2007).

    Article  Google Scholar 

  33. D. Feinberg and J. Friedel, J. Phys. 49, 485 (1988).

    Article  Google Scholar 

  34. S. Brazovskii and S. Matveenko, Sov. Phys. JETP 72, 864 (1992).

    Google Scholar 

  35. M. Hayashi and H. Yoshioka, Phys. Rev. Lett. 77, 3403 (1996).

    Article  ADS  Google Scholar 

  36. S. Brazovskii, in Charge Density Waves in Solids, Ed. by L. Gor’kov and G. Grüner (Elsevier, Amsterdam, 1990), p. 425.

    Google Scholar 

  37. N. P. Ong, G. Varma, and K. Maki, Phys. Rev. Lett. 52, 663 (1984).

    Article  ADS  Google Scholar 

  38. N. P. Ong and K. Maki, Phys. Rev. B 32, 6582 (1985).

    Article  ADS  Google Scholar 

  39. L. P. Gorkov, JETP Lett. 38, 87 (1983).

    ADS  Google Scholar 

  40. L. P. Gor’kov in Charge Density Waves in Solids, Ed. by L. Gor’kov and G. Grüner (Elsevier, Amsterdam, 1990), p. 403.

    Google Scholar 

  41. L. P. Gor’kov, Sov. Phys. JETP 59, 1057 (1984).

    Google Scholar 

  42. I. Batistic, A. Bjelis, and L. Gor’kov, J. Phys. 45, 1049 (1984).

    Article  Google Scholar 

  43. A. I. Larkin and S. Brazovskii, Solid State Commun. 93, 275 (1995).

    Article  ADS  Google Scholar 

  44. S. Brazovskii and T. Nattermann, Adv. Phys. 53, 177 (2004).

    Article  ADS  Google Scholar 

  45. T. Yi, N. Kirova and S. Brazovskii, Eur. Phys. J. ST 222, 1035 (2013).

    Article  Google Scholar 

  46. T. Yi, A. Rojo Bravo, N. Kirova, and S. Brazovskii, J. Supercond. Nov. Mag. 28, 1343 (2015).

    Article  Google Scholar 

  47. S. N. Artemenko, A. F. Volkov, and A. N. Kruglov, Sov. Phys. JETP 64, 906 (1986).

    Google Scholar 

  48. E. Barthel, G. Quirion, P. Wzietek, D. Jérome, J. B. Christensen, M. Jørgensen, and K. Bechgaard, J. Phys. I 1, 1501 (1991).

    Google Scholar 

  49. W. G. Clark, M. E. Hanson, S. E. Brown, et al., Synth. Met. 86, 1941 (1997).

    Article  Google Scholar 

  50. H. Requardt, F. Ya. Nad, P. Monceau, R. Currat, J. E. Lorenzo, S. Brazovskii, N. Kirova, G. Grubel, and Ch. Vettier, Phys. Rev. Lett. 80, 5631 (1998).

    Article  ADS  Google Scholar 

  51. S. Brown and A. Zettle, in Charge Density Waves in Solids, Ed. by L. Gor’kov and G. Grüner (Elsevier, Amsterdam, 1990), p. 223.

    Google Scholar 

  52. B. I. Ivlev and N. B. Kopnin, Adv. Phys. 33, 47 (1984).

    Article  ADS  Google Scholar 

  53. N. Kopnin, Theory of Nonequilibrium Superconductivity (Oxford Univ. Press, Oxford, UK, 2001).

    Book  Google Scholar 

  54. S. Artemenko and A. Volkov, in Charge Density Waves in Solids, Ed. by L. Gor’kov and G. Grüner (Elsevier Science, Amsterdam, 1990), p. 365.

    Google Scholar 

  55. S. Brazovskii, N. Kirova, H. Requardt, F. Ya. Nad, P. Monceau, R. Currat, J. E. Lorenzo, G. Grubel, and Ch. Vettier, Phys. Rev. B 61, 10640 (2000).

    Article  ADS  Google Scholar 

  56. S. Brazovskii, J. Phys. I 3, 2417 (1993).

    Google Scholar 

  57. S. Brazovskii, J. Phys. IV 3, 267 (1993).

    Google Scholar 

  58. I. V. Krive, A. S. Rozhavsky, and V. A. Rubakov, JETP Lett. 46, 121 (1987).

    ADS  Google Scholar 

  59. K. Sengupta and N. Dupuis, Phys. Rev. B 61, 13493 (2000).

    Article  ADS  Google Scholar 

  60. V. M. Yakovenko and H.-S. Goan, Phys. Rev. B 58, 10648 (1998).

    Article  ADS  Google Scholar 

  61. B. Hennion, J.-P. Pouget, and M. Sato, Phys. Rev. Lett. 68, 2374 (1992).

    Article  ADS  Google Scholar 

  62. S. M. Gol’berg, N. B. Kopnin, and M. I. Tribel’skii, Sov. Phys. JETP 67, 812 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Brazovskii.

Additional information

Contribution for the JETP special issue in honor of I.E. Dzyaloshinskii’s 90th birthday

Appendices

APPENDICES

APPENDIX A

ANOMALOUS ENERGY AND SHAPE OF THE CHARGED DISLOCATION IN A DW

In the Fourier representation, the energy of phase deformations looks like

$$\begin{gathered} W\{ \varphi \} = \frac{{\hbar {{{v}}_{F}}}}{{4\pi }} \\ \times \sum {{\text{|}}{{\varphi }_{k}}{{{\text{|}}}^{2}}\left[ {C_{{||}}^{2}k_{{||}}^{2} + {{C}_{ \bot }}k_{ \bot }^{2} + \frac{{r_{0}^{{ - 2}}k_{{||}}^{2}}}{{(k_{{||}}^{2} + k_{ \bot }^{2} + r_{{{\text{scr}}}}^{{ - 2}})}}} \right]} \,, \\ \end{gathered} $$
(A.1)

where r0 = \(\sqrt {\hbar {{{v}}_{F}}s\epsilon {\text{/}}(8{{e}^{2}})} \) is the Thomas–Fermi screening length in the parent metal which is the atomic-scale length, and rscr = r0/\(\sqrt {{{\rho }_{n}}} \) is the actual screening length by remnant charge carriers in the DW state. Here the normalized normal density ρn → 1 at T\(T_{c}^{0}\) and ρn ~ exp(–Δ/T) at low T being activated across the DW gap 2Δ. ρc = 1 – ρn = \(C_{{||}}^{0}\) is the condensate density. Because of the very large Coulomb energy, the longitudinal gradients are strongly suppressed and we can neglect in (A.1) all appearances of k|| except for the combination \(r_{0}^{{ - 2}}k_{{||}}^{2}\). At large transverse distances beyond the screening length rrscr we can neglect also \(k_{ \bot }^{2}\) in the denominator in (A.1); then the effective elastic theory is restored, while in stretched coordinates (x\(\sqrt {{{C}_{ \bot }}{{\rho }_{n}}{\text{/}}{{\rho }_{c}}} \), r):

$$\begin{gathered} W\{ \varphi \} \approx \frac{{\hbar {{{v}}_{F}}}}{{4\pi }}\sum {{\text{|}}{{\varphi }_{k}}{{{\text{|}}}^{2}}[C_{{||}}^{2}k_{{||}}^{2} + {{C}_{ \bot }}k_{ \bot }^{2}],} \\ {{C}_{{||}}} = {{\rho }_{c}}{\text{/}}{{\rho }_{n}},\quad {{k}_{ \bot }} \ll {{r}_{{{\text{scr}}}}}\,. \\ \end{gathered} $$
(A.2)

Within the screening distance r < rscr, the expression (A.1) describes a nonanalytic elastic theory, already known for uniaxial ferroelectrics, with the energy dependent on ratio of gradients rather on their values. In this nonscreened regime the energy dependence on the transverse length L = \(k_{ \bot }^{{ - 1}}\) at any given longitudinal scale L|| = \(k_{{||}}^{{ - 1}}\) is not monotonous, showing a minimum at \(L_{ \bot }^{2}\) ~ L||r0\(C_{ \bot }^{{1/2}}\). Multiplying the minimal energy density ~C\(L_{ \bot }^{{ - 2}}\) by the characteristic volume L||\(L_{ \bot }^{2}\)/\(a_{ \bot }^{2}\) we estimate the energy as a function of R = L as

$$\begin{gathered} C_{ \bot }^{{1/2}}{{R}^{2}}\hbar {{{v}}_{F}}{\text{/}}{{r}_{0}} = {{w}_{C}}N\quad {\text{with}} \\ {{w}_{C}}\sim {{T}_{c}}{{a}_{ \bot }}{\text{/}}{{r}_{0}}\quad {\text{at}}\quad N = \pi {{R}^{2}}{\text{/}}a_{ \bot }^{2}. \\ \end{gathered} $$

Consider a D-loop of a radius R in the (y, z) plane embracing a number N = πR2/\(a_{ \bot }^{2}\) chains or a D-line stretched in z direction at a distance Y = aN from its counterpart or from the surface. For the DL energy WD(N) the above estimations, with precise values found in [34], can be summarized as

(1) WD(N) ~ Tc\(\sqrt N \)ln(N), valid within the length r0—actually only at N ~ 1 i.e. for a elementary loop embracing only one chain, known as 2π soliton. A similar expression is valid at all distances for the spin vortex.

(2) WD(N) ~ NwC, wC ~ Tca/r0, valid at r0 < R < rscr.

(3) WD(N) ~ Tc(rscr/r0)\(\sqrt N \)ln(Na/rscr) at R > rscr.

Within the wide (at low T) regime 2 the dislocation energy follows the confinement-type area law W ~ N rather than the usual perimetrical-logarithmic law ~\(\sqrt N \)lnN.

APPENDIX B

THE MICROSCOPIC ORIGIN OF THE CHIRAL ANOMALY

Technically (see [58]), the anomaly appears from uncertainty in calculations of fermionic determinants needing to be regularized, which procedure is usually treated in a relativistically invariant way by traditions of the field theory. It is instructive to see the origin of the anomaly in a transparent way related to rules of many-electronic systems, namely to the Tomas–Fermi procedure. Let the electrons in the parent metal occupy a parabolic spectrum p2/2m up to a Fermi energy EF. In a smooth potential V(x) the electronic wave functions ΨE and their density distributions for an eigenenergy E are legitimately given by the WKB expressions

$$\begin{gathered} {{\Psi }_{E}} \propto (E - V{{(x)}^{{ - 1/4}}}\exp (i\int {dx{\kern 1pt} '(E - V(x{\kern 1pt} {{'}^{{1/2}}}),} \\ {{\rho }_{E}} = {\text{|}}\Psi (x){{{\text{|}}}^{2}} = (E - V{{(x)}^{{ - 1/2}}}). \\ \end{gathered} $$

Summing up ρE, the total density can be obtained and expanded in V/EF as ρ(x) – 〈ρ〉 ≈ –V(x)NF which yields the most important characterization of a metal: the linear response of the density to the applied potential. But if the spectrum linearization is done prematurely, then the Schrödinger equation becomes the first order one, the wave function ΨE looses the prefactor, ρ(x) becomes just constant, and the reaction to the local potential disappears. The role of the chiral anomaly action (WCA in Eq. (10)) is just to restore this missing contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazovskii, S., Kirova, N. Phase Slips, Dislocations, Half-Integer Vortices, Two-Fluid Hydrodynamics, and the Chiral Anomaly in Charge and Spin Density Waves. J. Exp. Theor. Phys. 132, 714–726 (2021). https://doi.org/10.1134/S1063776121040038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121040038

Navigation