Skip to main content
Log in

Counterpolarization of an Ensemble of Alkaline Atoms during Optical Pumping: Study with Allowance for Atomic Motion

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theory is developed for the optical pumping of alkali atoms with allowance for Zeeman and hyperfine structures and atomic motion in the model of instantaneous mixing between the Zeeman and hyperfine sublevels in an excited state. The appearance of the angular momentum in the 87Rb and 133Cs atoms that is opposite to the momentum of the photons pumping these atoms is studied. This effect is found to be most pronounced in the D2 line. The influence of the buffer gas pressure and the optical pumping intensity on the features of this effect is analyzed. The influence of the counterpolarization effect on the parameters of high-sensitivity quantum magnetometers is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Supek and C. J. Aine, Magnetoencephalography (Springer, New York, 2016).

    MATH  Google Scholar 

  2. M. Hämäläinen, R. Hari, R. J. Ilmoniemi, et al., Rev. Mod. Phys. 65, 413 (1993).

    Article  ADS  Google Scholar 

  3. V. K. Shah and R. T. Wakai, Phys. Med. Biol. 58, 8153 (2013).

    Article  Google Scholar 

  4. A. E. Ossadtchi, N. K. Kulachenkov, D. S. Chuchelov, et al., in Proceedings of the IEEE 2018 International Conference on Laser Optics (ICLO), St. Petersburg, 2018, p. 543.

  5. H. C. Davis, P. Ramesh, A. Bhatnagar, et al., Nat. Commun. 9, 131 (2018).

    Article  ADS  Google Scholar 

  6. L. Parkkonen, R. J. Ilmoniemi, F.-H. Lin, and M. Espy, Magnetoencephalography: From Signals to Dynamic Cortical Networks, Ed. by S. Supek and Ch. J. Aine (Springer, Berlin, 2014), p. 941.

  7. A. Soheilian, M. Ranjbaran, and M. M. Tehranchi, Sci. Rep. 10, 1294 (2020).

    Article  ADS  Google Scholar 

  8. T. G. Walker and M. S. Larsen, Adv. At. Mol. Opt. Phys. 65, 373 (2016).

    Article  ADS  Google Scholar 

  9. A. K. Vershovskii, Yu. A. Litmanovich, A. S. Pazgalev, and V. G Peshekhonov, Girosk. Navig. 26 (1), 55 (2018).

    Article  Google Scholar 

  10. K. A. Barantsev, E. N. Popov, and A. N. Litvinov, Quantum Electron. 49, 169 (2019).

    Article  ADS  Google Scholar 

  11. E. B. Aleksandrov and A. K. Vershovskii, Phys. Usp. 52, 605 (2009).

    Article  Google Scholar 

  12. D. Budker, W. Gawlik, D. F. Kimball, et al., Rev. Mod. Phys. 74, 1153 (2002).

    Article  ADS  Google Scholar 

  13. W. Happer, Rev. Mod. Phys. 44, 169 (1972).

    Article  ADS  Google Scholar 

  14. J. Kitching, Appl. Phys. Rev. 5, 031302 (2018).

    Article  ADS  Google Scholar 

  15. V. Gerginov, S. Krzyzewski, and S. Knappe, J. Opt. Soc. Am. B 34, 1429 (2017).

    Article  ADS  Google Scholar 

  16. G. Bevilacqua, V. Biancalana, P. Chessa, and Y. Dancheva, Appl. Phys. B 122, 4 (2016).

    Article  Google Scholar 

  17. D. Hunter, R. Jiménez-Martínez, J. Herbsommer, et al., Opt. Express 26, 30523 (2018).

    Article  ADS  Google Scholar 

  18. A. Weis, G. Bison, and Z. D. Grujić, in High Sensitivity Magnetometers, Ed. by A. Grosz, M. J. Haji-Sheikh, and S. C. Mukhopadhyay (Springer, Switzerland, 2017), p. 361.

    Google Scholar 

  19. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, Phys. Rev. Lett. 89, 138014 (2002).

    Article  Google Scholar 

  20. T. Scholtes, V. Schultze, R. Ijsselsteijn, et al., Rhys. Rev. A 84, 043416 (2011).

    ADS  Google Scholar 

  21. V. Schultze, T. Scholtes, R. Ijsselsteijn, and H. Meyer, J. Opt. Soc. Am. B 32, 730 (2015).

    Article  ADS  Google Scholar 

  22. T. Scholtes, S. Pustelny, S. Fritzsche, et al., Rhys. Rev. A 94, 013403 (2016).

    ADS  Google Scholar 

  23. W. Chalupczak, R. M. Godun, P. Anielski, et al., Phys. Rev. A 85, 4 (2012).

    Article  Google Scholar 

  24. G. Yang, H. Zhang, X. Geng, et al., Opt. Express 26, 30313 (2018).

    Article  ADS  Google Scholar 

  25. E. N. Popov, V. A. Bobrikova, S. P. Voskoboinikov, K. A. Barantsev, S. M. Ustinov, A. N. Litvinov, A. K. Vershovskii, S. P. Dmitriev, V. A. Kartoshkin, A. S. Pazgalev and M. V. Petrenko, JETP Lett. 108, 513 (2018).

    Article  ADS  Google Scholar 

  26. C. Cohen-Tannoudji, Comm. At. Mol. Phys. 2, 24 (1970).

    Google Scholar 

  27. F. Franz and J. Franz, Phys. Rev. 148, 82 (1966).

    Article  ADS  Google Scholar 

  28. A. Sieradzan and F. A. Franz, Phys. Rev. A 25, 2985 (1982).

    Article  ADS  Google Scholar 

  29. N. M. Pomerantsev, V. M. Ryzhkov, and G. V. Skrotskii, Physical Foundations of Quantum Magnetometry (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  30. Y. Chang, Y.-H. Guo, and J. Qin, Phys. Rev. A 99, 063411 (2019).

    Article  ADS  Google Scholar 

  31. I. M. Sokolov, D. V. Kupriyanov, and M. D. Havey, Opt. Commun. 243, 165 (2004).

    Article  ADS  Google Scholar 

  32. A. S. Sheremet, L. V. Gerasimov, I. M. Sokolov, et al., Phys. Rev. A 82, 033838 (2010).

    Article  ADS  Google Scholar 

  33. D. V. Kupriyanov, I. M. Sokolov, N. V. Larionov, et al., Phys. Rev. A 69, 033801 (2004).

    Article  ADS  Google Scholar 

  34. S. G. Rautian, G. I. Smirnov, and A. M. Shalagin, Nonlinear Resonances in Spectra of Atoms and Molecules (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  35. S. G. Rautian, Sov. Phys. JETP 24, 788 (1966).

    ADS  Google Scholar 

  36. G. A. Pitz, A. J. Sandoval, T. B. Tafoya, et al., J. Quant. Spectrosc. Radiat. Transfer 140, 18 (2014).

    Article  ADS  Google Scholar 

  37. W. Happer, Y-Y. Jau, and T. G. Walker, Optically Pumped Atoms (Wiley, Chichester, 2010).

    Book  Google Scholar 

  38. A. S. Kuraptsev and I. M. Sokolov, Phys. Rev. A 91, 053822 (2015).

    Article  ADS  Google Scholar 

  39. I. M. Sokolov, JETP Lett. 106, 341 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-29-10004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Barantsev.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barantsev, K.A., Litvinov, A.N., Pazgalev, A.S. et al. Counterpolarization of an Ensemble of Alkaline Atoms during Optical Pumping: Study with Allowance for Atomic Motion. J. Exp. Theor. Phys. 132, 189–199 (2021). https://doi.org/10.1134/S106377612101009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612101009X

Navigation