Skip to main content
Log in

Magnon BEC at Room Temperature and Its Spatio-Temporal Dynamics

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Recent advances in the studies of magnon gases have opened new horizons for the investigation of room-temperature macroscopic coherent states and discovery of Bose–Einstein condensation of magnons. Although the phenomenon has been discovered almost 15 years ago, a lot of important issues connected with magnon Bose–Einstein condensation remain unclear. Here I review the recent experimental achievements in investigations of this phenomenon. I show that the magnon condensate possesses high degrees of temporal and spatial coherency, the latter leading to observation of interference of two condensate. Discovery of second sound in magnon condensate is also discussed. Finally, I demonstrate a practical way to realize magnon laser, which create a freely propagating cloud of magnons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. Einstein, Sitzungsberg. Ber. Preuss. Akad. Wiss. 1, 3 (1925).

    Google Scholar 

  2. M. H. Anderson, J. R. Ensher, M. R. Matthews, et al., Science (Washington, DC, U. S.) 269, 198 (1995).

    Article  ADS  Google Scholar 

  3. K. B. Davis, M.-O. Mewes, M. R. Andrews, et al., Phys. Rev. Lett. 75, 3969 (1995).

    Article  ADS  Google Scholar 

  4. V. S. L’vov, Wave Turbulence Under Parametric Excitation (Springer, Berlin, 1994).

    Book  Google Scholar 

  5. D. Hulin, A. Mysyrowicz, and C. Benoit a la Guillaume, Phys. Rev. Lett. 45, 1970 (1995).

    Article  ADS  Google Scholar 

  6. D. Snoke, Nature (London, U. K.) 443, 403 (2006).

    Article  ADS  Google Scholar 

  7. D. Snoke and J. P. Wolfe, Phys. Rev. B 39, 4030 (1989).

    Article  ADS  Google Scholar 

  8. B. Lax and K. J. Button, Microwave Ferrites and Ferrimagnets (McGraw-Hill, New York, 1962).

    Google Scholar 

  9. V. E. Demidov, O. Dzyapko, S. O. Demokritov, et al., Phys. Rev. Lett. 99, 037205 (2007).

    Article  ADS  Google Scholar 

  10. B. A. Kalinikos and A. N. Slavin, J. Phys. C 19, 7013 (1986).

    Article  ADS  Google Scholar 

  11. S. O. Demokritov and V. E. Demidov, IEEE Trans. Mag. 44, 6 (2008).

    Article  ADS  Google Scholar 

  12. V. E. Demidov and S. O. Demokritov, IEEE Trans. Mag. 51, 0800215 (2015).

    Article  Google Scholar 

  13. O. Dzyapko, P. Nowik-Boltyk, B. Koene, et al., IEEE Magn. Lett. 7, 3501805 (2016).

    Article  Google Scholar 

  14. M. O. Borgh, J. Keeling, and N. G. Berloff, Phys. Rev. B 81, 235302 (2010).

    Article  ADS  Google Scholar 

  15. J. Keeling and N. G. Berloff, Contemp. Phys. 52, 131 (2011).

    Article  ADS  Google Scholar 

  16. B. A. Malomed, O. Dzyapko, V. E. Demidov, et al., Phys. Rev. Lett. 81, 024418 (2010).

    ADS  Google Scholar 

  17. S. M. Rezende, Phys. Rev. B 79, 174411 (2009).

    Article  ADS  Google Scholar 

  18. I. S. Tupitsyn, P. C. E. Stamp, and A. L. Burin, Phys. Rev. Lett. 100, 257202 (2008).

    Article  ADS  Google Scholar 

  19. V. Cherepanov, I. Kolokolov, and V. L’vov, Phys. Rep. 229, 81 (1993).

    Article  ADS  Google Scholar 

  20. P. Nowik-Boltyk, O. Dzyapko, V. E. Demidov, et al., Sci. Rep. 2, 482 (2012).

    Article  Google Scholar 

  21. V. Tiberkevich, I. V. Borisenko, P. Nowik-Boltyk, et al., Sci. Rep. 9, 9063 (2019).

    Article  ADS  Google Scholar 

  22. T. H. Maiman, Nature (London, U.K.) 187, 493 (1960).

    Article  ADS  Google Scholar 

  23. H. M. Wiseman, Phys. Rev. A 56, 2068 (1997).

    Article  ADS  Google Scholar 

  24. M. Holl, K. Burnett, C. Gardiner, et al., Phys. Rev. A 54, R1757 (1996).

    Article  ADS  Google Scholar 

  25. N. P. Robins, P. A. Altin, J. E. Debs, et al., Phys. Rep. 529, 265 (2013).

    Article  ADS  Google Scholar 

  26. M.-O. Mewes, M. R. Andrews, D. M. Kurn, et al., Phys. Rev. Lett. 78, 582 (1997).

    Article  ADS  Google Scholar 

  27. I. Bloch, T. W. Hansch, and T. Esslinger, Phys. Rev. Lett. 82, 3008 (1999).

    Article  ADS  Google Scholar 

  28. S. M. Rezende and F. R. Morgenthaler, Appl. Phys. Lett. 10, 184 (1967).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Finally, I would like to emphasize with many thanks a decisive role of A.S. Borovik-Romanov in my choice of magnetic dynamics as the main direction of my scientific carrier.

Funding

This work is a short review of original works performed at Münster University during more than a decade with financial support of Deutsche Forschungsgemeinschaft and European Union. This work supported in part by the Deutsche Forschungsgemeinschaft (project no. 416727653). I would like stress important contributions of V.E. Demidov, O. Dzyapko, G.A. Melkov, P. Nowik-Boltyk, N. Berloff, A.N. Slavin, and V. Tiberkevich to the above reported studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Demokritov.

Ethics declarations

This article was prepared for the special issue dedicated to the centenary of A.S. Borovik-Romanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demokritov, S.O. Magnon BEC at Room Temperature and Its Spatio-Temporal Dynamics. J. Exp. Theor. Phys. 131, 83–94 (2020). https://doi.org/10.1134/S1063776120070158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120070158

Navigation