Skip to main content
Log in

Origin of Energy States in the Bandgap of Zn1 –xMnxO

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We report on the results of analysis of optical absorption, EPR signals under optical excitation and magnetic susceptibility of hydrothermal Zn1 –xMnxO single crystals. In the absorption spectra of polarized light at temperatures of 4.2 and 77.3 K, narrow intense a, b, c, and d lines are observed in the energy range 1.877–1.936 eV of light quanta. The spectrum of these lines differs significantly from the spectra of donor and acceptor excitons for ZnO:Co and ZnO:Ni. The intensity of allowed and forbidden EPR signals of the Mn2+(d5) ions does not change under the action of light in the impurity absorption band, while the EPR signals of uncontrollable Fe3+ (d5) ions under illumination practically disappear. New experimental results for Zn1 –xMnxO lead to the conclusion that the d5/d4 donor level of the Mn2+ ion falls into the valence band, while the bandgap of Zn1 –xMnxO contains several dangling bond hybrid (DBH) states due to hybridization of 3d orbitals of the Mn2+ ion with the p-bonds of the nearest O2– oxygen ions. Electron transitions from the DBH states to the conduction band form a broad impurity absorption band of Zn1 –xMnxO, below the edge of which the a, b, c, and d lines referred to as donor excitons [(hloc + d5)e] and emerging as a result of Coulomb interaction of a free s-electron and a hole localized on DBH states (p + d5) are observed. The detection of donor excitons [(hloc + d5)e] makes it possible to study in detail the DBH states in the bandgap, which is important for photocatalysis in the visible light range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. K. A. Kikoin and V. N. Fleurov, Transition Metal Impurities in Semiconductors (World Sci., Singapore, 1994), Part 2, Chaps. 5, 6, 9.

  2. A. Zunger, Solid State Physics, Ed. by F. Seits, H. Ehrenreich, and D. Turnbull (Academic, New York, 1986), Vol. 39.

    Google Scholar 

  3. B. Clerjaud, J. Phys. C 18, 3615 (1985).

    Article  ADS  Google Scholar 

  4. V. I. Sokolov and K. A. Kikoin, Sov. Sci. Rev. A, Phys. 12, 147 (1989).

    Google Scholar 

  5. V. I. Sokolov, Semiconductors 28, 329 (1994).

    ADS  Google Scholar 

  6. F. W. Kleinlein and R. Helbig, Z. Phys. 266, 201 (1974).

    Article  ADS  Google Scholar 

  7. S. G. Gilliland, J. A. Sans, J. F. Sánches-Royo, G. Almonacid, and A. Segura, Appl. Phys. Lett. 96, 241902 (2010).

    Article  ADS  Google Scholar 

  8. C. A. Johnson, K. R. Kittelstved, T. C. Kaspar, T. C. Droubay, S. A. Chambers, G. M. Salley, and D. R. Gamelin, Phys. Rev. B 82, 115202 (2010).

    Article  ADS  Google Scholar 

  9. M. Godlewski, A. Wojcik-Glodowska, E. Guziewicz, S. Yatsunenko, A. Zakrzewski, Y. Dumont, E. Chikoidze, and M. R. Phillips, Opt. Mater. 31, 1768 (2009).

    Article  ADS  Google Scholar 

  10. N. O. Korsunska, I. V. Markevich, T. R. Stara, et al., Ukr. J. Phys. 63 7, 660 (2018).

  11. D. Iuşan, B. Sanyal, and O. Eriksson, J. Appl. Phys. 101, 09H101 (2007).

  12. S. J. Gilliland, J. A. Sans, J. F. Sánchez-Royo, et al., Phys. Rev. B 86, 155203 (2012).

    Article  ADS  Google Scholar 

  13. H. Raebiger, S. Lany, and A. Zunger, Phys. Rev. B 79, 165202 (2009).

    Article  ADS  Google Scholar 

  14. V. I. Sokolov, N. B. Gruzdev, V. A. Vazhenin, A. V. Fokin, and A. V. Druzhinin, Phys. Solid State 61, 702 (2019).

    Article  ADS  Google Scholar 

  15. J. Schneider and S. R. Sircar, Z. Naturforsch. 17a, 570 (1962).

  16. J. Schneider and S. R. Sircar, Z. Naturforsch. 17a, 651 (1962).

  17. D. V. Azamat and M. Fanciulli, Phys. B (Amsterdam, Neth.) 401402, 382 (2007).

  18. D. V. Azamat, J. Debus, D. R. Yakovlev, et al., Phys. Status Solidi B 247, 1517 (2010).

    Article  ADS  Google Scholar 

  19. Yu. S. Kutin, G. V. Mamin, and S. B. Orlinskii, J. Magn. Reson. 237, 110 (2013).

    Article  ADS  Google Scholar 

  20. S. A. Al’tshuler and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Nauka, Moscow, 1972; Halsted, Wiley, New York, 1974).

  21. J. Schneider, Z. Naturforsch. 17a, 189 (1962).

  22. I. P. Kuz’mina and V. A. Nikitenko, Zinc Oxide. Production and Optical Properties (Nauka, Moscow, 1984), p. 168 [in Russian].

    Google Scholar 

  23. A. Ciechan, H. Przybylińska, P. Boguslawski, et al., Phys. Rev. B 94, 165143 (2016).

    Article  ADS  Google Scholar 

  24. N. B. Gruzdev, V. I. Sokolov, and G. A. Yemelchenko, J. Low Temp. Phys. 35, 83 (2009).

    Article  Google Scholar 

  25. I. J. Broser, R. K. F. Germer, H.-J. E. Schulz, et al., Solid State Electron. 21, 1597 (1978).

    Article  ADS  Google Scholar 

  26. T. Dietl, J. Magn. Magn. Mater. 272276, 1969 (2004).

  27. C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. Geurts, Zinc Oxide. From Fundamental Properties Towards Novel Applications (Springer, Berlin, 2010), Chap. 9.

    Book  Google Scholar 

  28. R. Weidemann, H.-E. Gumlich, M. Kupsch, et al., Phys. Rev. B 45, 1172 (1992).

    Article  ADS  Google Scholar 

  29. T. Mizokawa, T. Nambu, A. Fujimori, et al., Phys. Rev. B 65, 085209 (2002).

    Article  ADS  Google Scholar 

  30. K. K. Rebane, The Elementary Theory of the Vibrational Structure of the Spectra of Impurity Centers of Crystals (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  31. R. D. Shannon, Acta Crystallogr., A 32, 751 (1976).

    Article  ADS  Google Scholar 

  32. P. Dahan, V. Fleurov, P. Thurian, et al., J. Phys.: Condens. Matter 10, 2007 (1998).

    ADS  Google Scholar 

  33. V. Fleurov, K. Kikoin, and A. Zunger, J. Nanoelectron. Optoelectron. 8, 466 (2013).

    Google Scholar 

  34. I. Di Marco, P. Thunström, M. I. Katsnelson, et al., Nat. Commun. 4, 2645 (2013).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.I. Anisimov, A.V. Lukoyanov, and S.V. Streltsov for discussion of the results of this study.

Funding

This work was performed under a Sate assignment of the Ministry of Education and Science of the Russian Federation (topic “Electron,” no. AAAA-A18-118020190098-5, topic “Magnet,” no. AAAA-A18-11802020290129-5) and under State assignment FEUZ-2020-0054 of the Ministry of Science and Higher Education of the Russian Federation for the Ural Federal University, supported by project no. 18-10-2-6, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Sokolov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, V.I., Gruzdev, N.B., Vazhenin, V.A. et al. Origin of Energy States in the Bandgap of Zn1 –xMnxO. J. Exp. Theor. Phys. 130, 681–689 (2020). https://doi.org/10.1134/S1063776120040123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120040123

Navigation