Skip to main content
Log in

Spatio-Temporal Analysis of Surface Waves Generating Octupole Vortices in a Square Domain

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In this study, we examine the underlying surface wave dynamics forming an octupole structure of vortices on the air–water interface. The surface waves are generated by a square wavemaker made of four cylindrical edges half-submerged on the interface. These waves direct the motion of floaters into gyrating trajectories, forming two counter-rotating vortices along each edge of the wavemaker and generating the overall octupole pattern. We 3D reconstruct the wave heights and describe the underlying flow through spatio-temporal analysis. Specifically, we decompose the overall wave field into components coming from the edges and corners of the wavemaker. To our knowledge, we are first to obtain a closed-form solution for a velocity potential, via a superposition of edge and phase-shifted oblique progressive waves produced by the wavemaker, to qualitatively model these octupole vortices. The methodology outlined provides a phenomenological approach to characterize the flow that may be useful for characterizing waves inside arbitrary finite-sized domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. N. Francois, H. Xia, H. Punzmann, et al., Phys. Rev. X 4, 021021 (2014).

    Google Scholar 

  2. H. Punzmann, N. Francois, H. Xia, G. Falkovich, and M. Shats, Nat. Phys. 10, 658 (2014).

    Article  Google Scholar 

  3. S. Lukaschuk, P. Denissenko, and G. Falkovich, Eur. Phys. J. Spec. Top. 145, 125 (2007).

    Article  Google Scholar 

  4. C. Sanli, D. Lohse, and D. van der Meer, Phys. Rev. E 89, 053011 (2014).

    Article  ADS  Google Scholar 

  5. P. Agrawal, P. S. Gandhi, and A. Neild, J. Appl. Phys. 114, 114904 (2013).

    Article  ADS  Google Scholar 

  6. S. Filatov, V. Parfenyev, S. Vergeles, et al., Phys. Rev. Lett. 116, 054501 (2016).

    Article  ADS  Google Scholar 

  7. G. R. Chavarria, P. le Gal, and M. le Bars, Phys. Rev. Fluids 3, 094803 (2018).

    Article  ADS  Google Scholar 

  8. Z. Wang, P. Zhang, X. Nie, and Y. Zhang, Sci. Rep. 5, 16846 (2015).

    Article  ADS  Google Scholar 

  9. P. Chen, Z. Luo, S. Guven, et al., Adv. Mater. 26, 5936 (2014).

    Article  Google Scholar 

  10. N. Francois, H. Xia, H. Punzmann, et al., Nat. Commun. 8, 14325 (2017).

    Article  ADS  Google Scholar 

  11. S. V. Filatov, S. Aliev, A. A. Levchenko, and D. A. Khramov, JETP Lett. 104, 702 (2016).

    Article  ADS  Google Scholar 

  12. F. Moisy, M. Rabaud, and K. Salsac, Exp. Fluids 46, 1021 (2009).

    Article  Google Scholar 

  13. W. Thielicke and E. J. Stamhuis, J. Open Res. Software, 2 (2014).

  14. Q. Aubourg and N. Mordant, Phys. Rev. Fluids 1, 023701 (2016).

    Article  ADS  Google Scholar 

  15. F. Haudin, A. Cazaubiel, L. Deike, et al., Phys. Rev. E 93, 043110 (2016).

    Article  ADS  Google Scholar 

  16. C. Kuo, H. Hwung, and C. Chien, Wave Motion 46, 189 (2009).

    Article  Google Scholar 

  17. R. Dean and R. Dalrymple, Water Wave Mechanics for Engineers and Scientists (World Scientific, Singapore, 1991), Vol. 2.

    Book  Google Scholar 

  18. L. Landau and E. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon, London, 1959).

  19. J. Bouvard, W. Herreman, and F. Moisy, Phys. Rev. Fluids 2, 084801 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Vladimir Parfenyev for his useful insights and suggestions. We also thank Paul Fontana for his help in the analytical model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Abella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abella, A.P., Soriano, M.N. Spatio-Temporal Analysis of Surface Waves Generating Octupole Vortices in a Square Domain. J. Exp. Theor. Phys. 130, 452–462 (2020). https://doi.org/10.1134/S1063776120030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120030085

Navigation