Skip to main content
Log in

New Universality Class Associated with Jahn–Teller Distortion and Double Exchange

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The scaling of the magnetic heat capacity in the two manganites La0.85Ag0.15MnO3 and Sm0.55Sr0.45MnO has given the critical exponents α = –0.23 and ν = 0.7433 of the heat capacity and correlation radius of the magnetic order parameter, respectively, which do not belong to any known universality class. These results cannot be attributed to chemical inhomogeneities and/or structural imperfections because the samples are of a high quality. Thus, unusual critical exponents can be associated not only with the chemical disorder and/or structural defects but also with the collective behavior of the lattice. An analogy has been revealed between the effects of the magnetic field and doping on ternary oxides of transition metals: the magnetic field affecting lattice distortions through the orientation of t2g orbitals acts as chemical doping. It seems that scaling relations are more stable than critical exponents in them. The synchronism of lattice distortions and ferromagnetism leads to a novel criticality, but their desynchronization induced by magnetostructural disorder results in the violation of scaling relations between isothermal and isomagnetic exponents. Although double-exchange systems demonstrate novel criticality, they satisfy scaling relations until the magnetic behavior is synchronized with the coherent lattice behavior in the form of cooperative Jahn–Teller distortions. Breaking of double exchange bonds leads to the formation of metamagnetic clusters with magnetic dipole–dipole interaction between them, which desynchronizes lattice distortions and ferromagnetism, resulting in the violation of scaling relations. The proposed new universality class includes diverse materials such as manganites, cobaltites, crystalline Fe–Pt and amorphous Fe–Mn alloys, and high-Tc superconductors. Unusual criticality in double-exchange systems is due to an unusual semiclassical nature of double-exchange ferromagnetism caused by real exchange, i.e., electron current through Mn3+–O–Mn4+ chains with the conservation of the spin rather than by virtual exchange as in a usual ferromagnet. Double-exchange ferromagnetism arises only because to freely itinerate, electrons orient the magnetic moments of Mn cations in a single direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. W. H. Zurek, Nature (London, U.K.) 317, 505 (1985).

    Article  ADS  Google Scholar 

  2. S. M. Griffin, M. Lilienblum, K. Delaney, Y. Kumagai, M. Fiebig, and N. A. Spaldin, arXiv:1204.3785v1 [cond-mat.mtrl-sci] (2012).

  3. F. R. Klinkhamer and G. E. Volovik, JETP Lett. 105, 74 (2017).

    Article  ADS  Google Scholar 

  4. S. Eckel, A. Kumar, T. Jacobson, I. B. Spielman, and G. K. Campbell, Phys. Rev. X 8, 021021 (2018).

    Google Scholar 

  5. Sh. B. Abdulvagidov, A. M. Aliev, A. G. Gamzatov, V. I. Nizhankovski, H. Modge, and O. Yu. Gorbenko, JETP Lett. 84, 31 (2006).

    Article  Google Scholar 

  6. Sh. B. Abdulvagidov, I. K. Kamilov, A. M. Aliev, and A. B. Batdalov, J. Exp. Theor. Phys. 96, 757 (2003).

    Article  ADS  Google Scholar 

  7. S. H. Park, Y. H. Jeong, K. B. Lee, and S. J. Kwon, Phys. Rev. B 56, 67 (1997).

    Article  ADS  Google Scholar 

  8. P. Lin, S. H. Chun, M. B. Salamon, Y. Tomioka, and Y. Tokura, J. Appl. Phys. 87, 5825 (2000).

    Article  ADS  Google Scholar 

  9. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  10. D. S. Simons and M. B. Salamon, Phys. Rev. B 10, 4680 (1974).

    Article  ADS  Google Scholar 

  11. M. B. Salamon, S. E. Inderhees, J. P. Rice, B. G. Pazol, D. M. Ginsberg, and N. Goldenfeld, Phys. Rev. B 38, 885 (1988).

    Article  ADS  Google Scholar 

  12. T. Park and M. B. Salamon, Phys. Rev. B 69, 054505 (2004).

    Article  ADS  Google Scholar 

  13. O. Boxberg and K. Westerholt, Phys. Rev. B 50, 9331 (1994).

    Article  ADS  Google Scholar 

  14. W. J. Jiang, X. Z. Zhou, G. Williams, Y. Mukovskii, and K. Glazyrin, Phys. Rev. Lett. 99, 177203 (2007).

    Article  ADS  Google Scholar 

  15. J. S. Zhou, K. Matsubayashi, Y. Uwatoko, C. Q. Jin, J. G. Cheng, J. B. Goodenough, Q. Q. Liu, and T. Katsura, Phys. Rev. Lett. 101, 077206 (2008).

    Article  ADS  Google Scholar 

  16. P. Sarkar, S. Arumugam, P. Mandal, A. Murugeswari, R. Thiyagarajan, S. Esaki Muthu, D. M. Radheep, Ch. Ganguli, K. Matsubayshi, and Y. Uwatoko, Phys. Rev. Lett. 103, 057205 (2009).

    Article  ADS  Google Scholar 

  17. A. Omerzu, M. Tokumoto, B. Tadic, and D. Mihailovic, Phys. Rev. Lett. 87, 177205 (2001).

    Article  ADS  Google Scholar 

  18. J. Lago, M. J. Rosseinsky, S. J. Blundell, P. D. Battle, M. Diaz, I. Uriarte, and T. Rojo, Phys. Rev. B 83, 104404 (2011).

    Article  ADS  Google Scholar 

  19. A. B. Harris, J. Phys. C 7, 1671 (1974).

    Article  ADS  Google Scholar 

  20. A. Weinrib and B. I. Halperin, Phys. Rev. B 27, 413 (1983).

    Article  ADS  Google Scholar 

  21. J. Lin, P. Tong, D. Cui, Ch. Yang, J. Yang, Sh. Lin, B. Wang, W. Tong, L. Zhang, Y. Zou, and Y. Sun, Sci. Rep. 5, 7933 (2015).

    Article  ADS  Google Scholar 

  22. D. Ginting, D. Nanto, Y. R. Denny, K. Tarigan, S. Hadi, M. Ihsan, and J.-S. Rhyee, J. Magn. Magn. Mater. 395, 41 (2015).

    Article  ADS  Google Scholar 

  23. A. Oleaga, A. Salazar, D. Prabhakaran, J.-G. Cheng, and J. S. Zhou, Phys. Rev. B 85, 184425 (2012).

    Article  ADS  Google Scholar 

  24. T. Kida, A. Senda, S. Yoshii, M. Hagiwara, T. Takeuchi, T. Nakano, and I. Terasak, Europhys. Lett. 84, 27004 (2008).

    Article  ADS  Google Scholar 

  25. N. Tateiwa, Y. Haga, T. D. Matsuda, E. Yamamoto, and Z. Fisk, Phys. Rev. B 89, 064420 (2014).

    Article  ADS  Google Scholar 

  26. P. Limelette, A. Georges, D. Jérome, P. Wzietek, P. Metcalf, and J. M. Honig, Science (Washington, DC, U. S.) 302, 89 (2003).

    Article  ADS  Google Scholar 

  27. F. Kagawa, K. Miyagawa, and K. Kanoda, Nature (London, U.K.) 436, 03806 (2005).

    Article  Google Scholar 

  28. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).

    Article  ADS  Google Scholar 

  29. A. V. Lazuta, V. A. Ryzhov, A. I. Kurbakov, V. A. Trounov, I. I. Larionov, O. Gorbenko, and A. Kaul, J. Magn. Magn. Mater. 258259, 315 (2003).

  30. A. I. Kurbakov, J. Magn. Magn. Mater. 322, 967 (2010).

    Article  ADS  Google Scholar 

  31. Sh. B. Abdulvagidov, G. M. Shakhshaev, and I. K. Kamilov, Instrum. Exp. Tech. 39, 751 (1996).

    Google Scholar 

  32. P. Sullivan and G. Seidel, Phys. Rev. 173, 679 (1968).

    Article  ADS  Google Scholar 

  33. F. Vazquez, J. A. Bonachela, C. López, and M. A. Munoz, Phys. Rev. Lett. 106, 235702 (2011).

    Article  ADS  Google Scholar 

  34. E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, Science (Washington, DC, U. S.) 285, 867 (1999).

    Article  Google Scholar 

  35. L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, and S. Parkin, Science (Washington, DC, U. S.) 315, 5818 (2007).

    Google Scholar 

  36. J. Stein et al., Phys. Rev. Lett. 119, 177201 (2017).

    Article  ADS  Google Scholar 

  37. S. Choi et al., Phys. Rev. Lett. 119, 227001 (2017).

    Article  ADS  Google Scholar 

  38. V. L. Pokrovskii and G. V. Uimin, Sov. Phys. JETP 34, 457 (1971).

    ADS  Google Scholar 

  39. J. Ashkin and E. Teller, Phys. Rev. 64, 178 (1943).

    Article  ADS  Google Scholar 

  40. Sh. B. Abdulvagidov, V. I. Nizhankovskii, and L. K. Magomedova, Phys. B (Amsterdam, Neth.) 405, 4574 (2010).

  41. Sh. B. Abdulvagidov and Sh. Z. Djabrailov, JETP Lett. 105, 595 (2017).

    Article  ADS  Google Scholar 

  42. O. V. Melnikov, O. Yu. Gorbenko, A. R. Kaul, A. M. Aliev, A. G. Gamzatov, Sh. B. Abdulvagidov, A. B. Batdalov, R. V. Demin, and L. I. Koroleva, Funct. Mater. 13, 323 (2006).

    Google Scholar 

  43. O. Yu. Gorbenko, O. V. Melnikov, A. R. Kaul, A. M. Balagurov, S. N. Bushmeleva, L. I. Koroleva, and R. V. Demin, Mater. Sci. Eng. B 116, 64 (2005).

    Article  Google Scholar 

  44. A. I. Kurbakov, V. A. Trunov, and G. Andre, Crystall. Rep. 49, 899 (2004).

    Article  ADS  Google Scholar 

  45. T. Schneider and J. M. Muller, Phase Transition Approach to High Temperature Superconductivity: Universal Properties of Cuprate Superconductors (Imperial College Press, London, 2000).

    Book  Google Scholar 

  46. H. Köppel, D. R. Yarkony, and H. Barentzen, The Jahn–Teller Effect: Fundamentals and Implications for Physics and Chemistry (Springer, Berlin, 2009).

    Book  Google Scholar 

  47. M. Coleman and J. A. Lipa, Phys. Rev. Lett. 74, 286 (1995).

    Article  ADS  Google Scholar 

  48. J. M. De Teresa, M. R. Ibarra, P. Algarabel, L. Morellon, B. Garcıa-Landa, C. Marquina, C. Ritter, A. Maignan, C. Martin, B. Raveau, A. Kurbakov, and V. Trounov, Phys. Rev. B 65, 100403(R) (2002).

  49. Sh. B. Abdulvagidov, A. M. Aliev, A. B. Batdalov, and I. K. Kamilov, J. Magn. Magn. Mater. 272276, 1738 (2004).

  50. N. Khan, P. Mandal, K. Mydeen, and D. Prabhakaran, Phys. Rev. B 85, 214419 (2012).

    Article  ADS  Google Scholar 

  51. J. Mira, J. Rivas, M. Vazquez, J. M. Garcıa-Beneytez, J. Arcas, R. D. Sánchez, and M. A. Señarıs-Rodrıguez, Phys. Rev. B 59, 123 (1999).

    Article  ADS  Google Scholar 

  52. M. B. Salamon and S. H. Chun, Phys. Rev. B 68, 014411 (2003).

    Article  ADS  Google Scholar 

  53. J. Yiang, Y. P. Lee, and Y. Li, Phys. Rev. B 76, 054442 (2007).

    Article  ADS  Google Scholar 

  54. A. G. Gamzatov, Sh. B. Abdulvagidov, A. M. Aliev, A. B. Batdalov, O. V. Mel’nikov, and O. Yu. Gorbenko, JETP Lett. 86, 340 (2007).

    Article  ADS  Google Scholar 

  55. K. I. Kugel’ and D. I. Khomskii, Sov. Phys. Usp. 25, 231 (1982).

    Article  ADS  Google Scholar 

  56. K. I. Kugel’ and D. I. Khomskii, Sov. Phys. JETP 37, 725 (1973).

  57. W. Jiang, X. Z. Zhou, and G. Williams, Y. Mukovskii, and K. Glazyrin, Phys. Rev. B 77, 064424 (2008).

    Article  ADS  Google Scholar 

  58. D. S. Robinson and M. B. Salamon, Phys. Rev. Lett. 48, 156 (1982).

    Article  ADS  Google Scholar 

  59. T. L. Phan, P. S. Tola, N. T. Dang, J. S. Rhyee, W. H. Shon, and T. A. Ho, J. Magn. Magn. Mater. 441, 290 (2017).

    Article  ADS  Google Scholar 

  60. M. Barma, Phys. Rev. B 12, 2710 (1975).

    Article  ADS  Google Scholar 

  61. K. I. Kugel’ and D. I. Khomskii, JETP Lett. 23, 237 (1976).

  62. H. Han, L. Zhang, D. Sapkota, N. Hao, L. Ling, H. Du, L. Pi, C. Zhang, D. G. Mandrus, and Y. Zhang, Phys. Rev. B 96, 094439 (2017).

    Article  ADS  Google Scholar 

  63. S. Rößler, H. S. Nair, U. K. Rößler, C. M. N. Kumar, S. Elizabeth, and S. Wirth, Phys. Rev. B 84, 184422 (2011).

    Article  ADS  Google Scholar 

  64. Y. Yeshurun, M. B. Salamon, K. V. Rao, and H. S. Chen, Phys. Rev. Lett. 45, 1366 (1980).

    Article  ADS  Google Scholar 

  65. A. I. Abramovich, A. I. Koroleva, A. V. Michurin, O. Yu. Gorbenko, and A. R. Kaul’, Phys. Solid State 42, 1494 (2000).

    Article  ADS  Google Scholar 

  66. I. O. Troyanchuk, V. A. Khomchenko, M. Tovar, H. Szymczak, and K. Bärner, Phys. Rev. B 69, 054432 (2004).

    Article  ADS  Google Scholar 

  67. Y. Q. Ma, W. H. Song, R. L. Zhang, J. M. Dai, J. Yang, J. J. Du, Y. P. Sun, C. Z. Bi, Y. J. Ge, and X. G. Qiu, Phys. Rev. B 69, 134404 (2004).

    Article  ADS  Google Scholar 

  68. Y. Q. Ma, W. H. Song, J. M. Dai, R. L. Zhang, B. C. Zhao, Z. G. Sheng, W. J. Lu, J. J. Du, and Y. P. Sun, Phys. Rev. B 70, 054413 (2004).

    Article  ADS  Google Scholar 

  69. D. Ginting, D. Nanto, Y. D. Zhang, S. C. Yu, and T. L. Phan, Phys. B (Amsterdam, Neth.) 412, 17 (2013).

  70. H. E. Stainley, Introduction to Phase Transition and Critical Phenomena (Oxford Univ. Press, London, 1971).

    Google Scholar 

  71. N. Khan, A. Midya, K. Mydeen, P. Mandal, A. Loidl, and D. Prabhakaran, Phys. Rev. B 82, 064422 (2010).

    Article  ADS  Google Scholar 

  72. K. Yamada, Y. Ishikawa, Y. Endoh, and T. Masumoto, Solid State Commun. 16, 1335 (1975).

    Article  ADS  Google Scholar 

  73. J. S. Kouvel and J. B. Comly, Phys. Rev. Lett. 20, 1237 (1968).

    Article  ADS  Google Scholar 

  74. S. J. Poon and J. Durand, Phys. Rev. B 16, 316 (1977).

    Article  ADS  Google Scholar 

  75. M. N. Deschizeaux and G. Develey, J. Phys. (Paris) 32, 319 (1971).

    Article  Google Scholar 

  76. M. F. Collins, V. J. Minkiewicz, R. Nathans, L. Passell, and G. Shirane, Phys. Rev. 179, 417 (1969).

    Article  ADS  Google Scholar 

  77. J. Fan, L. Ling, B. Hong, L. Zhang, L. Pi, and Y. Zhang, Phys. Rev. B 81, 144426 (2010).

    Article  ADS  Google Scholar 

  78. K. Huang, Statistical Mechanics, 2nd ed. (Wiley, New York, 1987).

    MATH  Google Scholar 

  79. M. B. Salamon, S. E. Inderhees, J. P. Rice, B. G. Pazol, D. M. Ginsberg, and N. Goldenfeld, Phys. Rev. B 38, 885 (1988).

    Article  ADS  Google Scholar 

  80. E. Figueroa, L. Lundgren, O. Beckman, and S. M. Bhagat, Solid State Commun. 20, 961 (1976).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.G. Deshpande for stimulating discussions.

Funding

This work was supported in part by the Ministry of Science and Higher Education of the Russian Federation (state contract no. 0203-2016-0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. B. Abdulvagidov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulvagidov, S.B., Djabrailov, S.Z., Abdulvagidov, B.S. et al. New Universality Class Associated with Jahn–Teller Distortion and Double Exchange. J. Exp. Theor. Phys. 130, 528–542 (2020). https://doi.org/10.1134/S1063776120020107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120020107

Navigation