Skip to main content
Log in

Photoelectric Effect in an Organic-Semiconductor-Based ZnPc:C70 Heterostructure with a Subwavelength Aluminum Grating

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dependence of the ampere–watt sensitivity of a hybrid photoelectric structure, which consists of a transparent ITO electrode, a film of a mixture of organic semiconductors (zinc phthalocyanine ZnPc, and fullerene C70), and a subwavelength aluminum grating as the second electrode, on the polarization and direction of an exciting light flux is experimentally studied. The efficiency of conversion of TM-polarized light into a photocurrent is found to increase manifold in the case of excitation on the side of the aluminum nanograting. The experimental results are explained in terms of a numerical model, which takes into account the plasmon contribution to the optical field inside the organic film in the case of TM-polarized light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K.-J. Baeg, M. Binda, D. Natali, et al., Adv. Mater. 25, 4267 (2013).

    Article  Google Scholar 

  2. E. Manna, T. Xiao, J. Shinar, and R. Shinar, Electronics 4, 688 (2015).

    Article  Google Scholar 

  3. V. A. Milichko, A. S. Shalin, I. S. Mukhin, A. E. Kovrov, A. A. Krasilin, A. V. Vinogradov, P. A. Belov, and C. R. Simovski, Phys. Usp. 59, 727 (2016).

    Article  ADS  Google Scholar 

  4. V. A. Benderskii and E. I. Kats, J. Exp. Theor. Phys. 127, 566 (2018).

    Article  ADS  Google Scholar 

  5. J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, Adv. Mater. 17, 66 (2005).

    Article  Google Scholar 

  6. B. Kippelen and J.-L. Bredas, Energy Environ. Sci. 2, 251 (2009).

    Article  Google Scholar 

  7. K. Cnops, B. P. Rand, D. Cheyns, B. Verreet, M. A. Empl, and P. Heremans, Nat. Commun. 5, 3406 (2014).

    Article  ADS  Google Scholar 

  8. C.-F. Lin, M. Zhang, S.-W. Liu, T.-L. Chiu, and J.‑H. Lee, Int. J. Mol. Sci. 12, 476 (2011).

    Article  Google Scholar 

  9. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).

    Article  ADS  Google Scholar 

  10. J. A. Schuller, E. S. Barnard, W. Cai, et al., Nat. Mater. 9, 193 (2010).

    Article  ADS  Google Scholar 

  11. C. Min, J. Li, G. Veronis, et al., Appl. Phys. Lett. 96, 133302 (2010).

    Article  ADS  Google Scholar 

  12. V. V. Lazarev, L. M. Blinov, I. V. Simdyankin, S. G. Yudin, V. V. Artemov, M. V. Gorkunov, and S. P. Palto, JETP Lett. 107, 464 (2018).

    Article  ADS  Google Scholar 

  13. S. P. Palto, A. V. Alpatova, A. R. Geivandov, L. M. Blinov, V. V. Lazarev and S. G. Yudin, Opt. Spectrosc. 124, 206 (2018).

    Article  Google Scholar 

  14. S. P. Palto, M. I. Barnik, V. V. Artemov, et al., J. Appl. Phys. 117, 223108 (2015).

    Article  ADS  Google Scholar 

  15. http://empossible.net/academics/emp5304/.

  16. H. Fujiwara and M. Kondo, Phys. Rev. B 71, 075109 (2005).

    Article  ADS  Google Scholar 

  17. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation in terms of the state assignment of the Federal Scientific Research Center Crystallography and Photonics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Palto.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, V.V., Blinov, L.M., Yudin, S.G. et al. Photoelectric Effect in an Organic-Semiconductor-Based ZnPc:C70 Heterostructure with a Subwavelength Aluminum Grating. J. Exp. Theor. Phys. 130, 133–139 (2020). https://doi.org/10.1134/S1063776119120057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119120057

Navigation