Skip to main content
Log in

Cosmological Scenarios with Bounce and Genesis in Horndeski Theory and Beyond

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

This essay is a brief review of the recent studies of non-singular cosmological scenarios with bounce and Genesis and their stability in a subclass of scalar–tensor theories with higher derivatives—beyond Horndeski theories. We discuss the general results of stability analysis of the nonsingular cosmological solutions in beyond Horndeski theories, as well as other closely related topics: 1) the no-go theorem, which is valid in the general Horndeski theories but not in their extensions, 2) singularities in disformal transformations relating beyond Horndeski theories with general ones, 3) healthy behavior of the scalar sector in the unitary gauge despite divergencies of coefficients in the quadratic action for perturbations (“γ-crossing”). We describe several specific examples of bouncing cosmologies and models with Genesis epoch which have neither ghosts nor gradient instabilities among the linearized perturbations about the homogeneous isotropic background during entire evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. This reasoning does not apply to the case of the closed Universe, where the bounce is possible if the energy density and effective pressure grow slower than a–2 during contraction [15].

  2. We do not consider the special case of ghost condensate [66].

  3. Let us also mention the discussion in [67] of the solutions of [42].

REFERENCES

  1. J. L. Lehners, Phys. Rep. 465, 223 (2008); arXiv:0806.1245 [astro-ph].

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Novello and S. E. P. Bergliaffa, Phys. Rep. 463, 127 (2008); arXiv:0802.1634 [astro-ph].

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015); arXiv:1406.2790 [astro-ph.CO].

    Article  ADS  MathSciNet  Google Scholar 

  4. P. Creminelli, M. A. Luty, A. Nicolis, and L. Senatore, J. High Energy Phys. 0612, 080 (2006); hep-th/0606090.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Creminelli, A. Nicolis, and E. Trincherini, J. Cosmol. Astropart. Phys. 1011, 021 (2010); arXiv:1007.0027 [hep-th].

    Article  Google Scholar 

  6. A. Borde, A. H. Guth, and A. Vilenkin, Phys. Rev. Lett. 90, 151301 (2003); gr-qc/0110012.

    Article  ADS  Google Scholar 

  7. A. Borde and A. Vilenkin, Int. J. Mod. Phys. D 5, 813 (1996); gr-qc/9612036.

    Article  ADS  Google Scholar 

  8. F. Finelli and R. Brandenberger, Phys. Rev. D 65, 103522 (2002); hep-th/0112249.

    Article  ADS  Google Scholar 

  9. V. A. Belinsky, I. M. Khalatnikov, and E. M. Lifshitz, Adv. Phys. 19, 525 (1970).

    Article  ADS  Google Scholar 

  10. J. K. Erickson, D. H. Wesley, P. J. Steinhardt, and N. Turok, Phys. Rev. D 69, 063514 (2004); hep-th/0312009.

    Article  ADS  MathSciNet  Google Scholar 

  11. I. M. Khalatnikov and A. Y. Kamenshchik, Phys. Lett. B 553, 119 (2003); gr-qc/0301022.

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D 64, 123522 (2001); hep-th/0103239; E. I. Buchbinder, J. Khoury, and B. A. Ovrut, Phys. Rev. D 76, 123503 (2007); hep-th/0702154.

  13. V. A. Rubakov, Phys. Usp. 57, 128 (2014); arXiv:1401.4024 [hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  14. F. J. Tipler, Phys. Rev. D 17, 2521 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. A. Starobinsky, Sov. Astron. Lett. 4, 82 (1978).

    ADS  Google Scholar 

  16. T. Kobayashi, arXiv:1901.07183 [gr-qc].

  17. A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D 79, 064036 (2009); arXiv:0811.2197 [hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  18. C. Deffayet, G. Esposito-Farese, and A. Vikman, Phys. Rev. D 79, 084003 (2009); arXiv:0901.1314 [hep-th].

    Article  ADS  Google Scholar 

  19. C. Deffayet, S. Deser, and G. Esposito-Farese, Phys. Rev. D 80, 064015 (2009); arXiv:0906.1967 [gr-qc].

    Article  ADS  Google Scholar 

  20. C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade, Phys. Rev. D 84, 064039 (2011); arXiv:1103.3260 [hep-th].

    Article  ADS  Google Scholar 

  21. G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).

    Article  Google Scholar 

  22. M. Zumalacárregui and J. García-Bellido, Phys. Rev. D 89, 064046 (2014); arXiv:1308.4685 [gr-qc].

    Article  ADS  Google Scholar 

  23. J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, Phys. Rev. Lett. 114, 211101 (2015); arXiv:1404.6495 [hep-th].

    Article  ADS  Google Scholar 

  24. J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, J. Cosmol. Astropart. Phys. 1502, 018 (2015); arXiv:1408.1952 [astro-ph.CO].

    Article  MathSciNet  Google Scholar 

  25. D. Langlois and K. Noui, J. Cosmol. Astropart. Phys. 1607 (07), 016 (2016); arXiv:1512.06820 [gr-qc].

  26. M. Crisostomi, K. Koyama, and G. Tasinato, J. Cosmol. Astropart. Phys. 1604 (04), 044 (2016); arXiv:1602.03119 [hep-th].

    Article  MathSciNet  Google Scholar 

  27. J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui, and G. Tasinato, J. High Energy Phys. 1612, 100 (2016); arXiv:1608.08135 [hep-th].

  28. D. Langlois, M. Mancarella, K. Noui, and F. Vernizzi, J. Cosmol. Astropart. Phys. 1705 (05), 033 (2017); arXiv:1703.03797 [hep-th].

    Article  MathSciNet  Google Scholar 

  29. D. Langlois and K. Noui, J. Cosmol. Astropart. Phys. 1602 (02), 034 (2016); arXiv:1510.06930 [gr-qc].

  30. D. Langlois, Int. J. Mod. Phys. D 28, 1942006 (2019); arXiv:1811.06271 [gr-qc].

  31. A. De Felice, D. Langlois, S. Mukohyama, K. Noui, and A. Wang, Phys. Rev. D 98, 084024 (2018); arXiv:1803.06241 [hep-th].

  32. J. D. Bekenstein, Phys. Rev. D 48, 3641 (1993); gr-qc/9211017.

    Article  ADS  MathSciNet  Google Scholar 

  33. D. Bettoni and S. Liberati, Phys. Rev. D 88, 084020 (2013); arXiv:1306.6724 [gr-qc].

    Article  ADS  Google Scholar 

  34. J. Ben Achour, D. Langlois, and K. Noui, Phys. Rev. D 93, 124005 (2016); arXiv:1602.08398 [gr-qc].

  35. M. Crisostomi, M. Hull, K. Koyama, and G. Tasinato, J. Cosmol. Astropart. Phys. 1603 (03), 038 (2016); arXiv:1601.04658 [hep-th].

    Article  MathSciNet  Google Scholar 

  36. T. Qiu, J. Evslin, Y. F. Cai, M. Li, and X. Zhang, J. Cosmol. Astropart. Phys. 1110, 036 (2011); arXiv:1108.0593 [hep-th].

    Article  Google Scholar 

  37. D. A. Easson, I. Sawicki, and A. Vikman, J. Cosmol. Astropart. Phys. 1111, 021 (2011); arXiv:1109.1047 [hep-th].

    Article  ADS  Google Scholar 

  38. M. Osipov and V. Rubakov, J. Cosmol. Astropart. Phys. 1311, 031 (2013); arXiv:1303.1221 [hep-th].

    Article  Google Scholar 

  39. Y. F. Cai, D. A. Easson, and R. Brandenberger, J. Cosmol. Astropart. Phys. 1208, 020 (2012); arXiv:1206.2382 [hep-th].

    Article  Google Scholar 

  40. L. Battarra, M. Koehn, J. L. Lehners, and B. A. Ovrut, J. Cosmol. Astropart. Phys. 1407, 007 (2014); arXiv:1404.5067 [hep-th].

    Article  Google Scholar 

  41. T. Qiu and Y. T. Wang, J. High Energy Phys. 1504, 130 (2015); arXiv:1501.03568 [astro-ph.CO].

  42. A. Ijjas and P. J. Steinhardt, Phys. Rev. Lett. 117, 121304 (2016); arXiv:1606.08880 [gr-qc].

  43. A. Ijjas and P. J. Steinhardt, Phys. Lett. B 764, 289 (2017); arXiv:1609.01253 [gr-qc].

  44. L. Perreault Levasseur, R. Brandenberger, and A. C. Davis, Phys. Rev. D 84, 103512 (2011); arXiv:1105.5649 [astro-ph.CO].

    Article  ADS  Google Scholar 

  45. Z. G. Liu, J. Zhang, and Y. S. Piao, Phys. Rev. D 84, 063508 (2011); arXiv:1105.5713 [astro-ph.CO].

    Article  ADS  Google Scholar 

  46. Z. G. Liu and Y. S. Piao, Phys. Lett. B 718, 734 (2013); arXiv:1207.2568 [gr-qc].

    Article  ADS  Google Scholar 

  47. K. Hinterbichler, A. Joyce, J. Khoury, and G. E. J. Miller, J. Cosmol. Astropart. Phys. 1212, 030 (2012); arXiv:1209.5742 [hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  48. S. Nishi and T. Kobayashi, J. Cosmol. Astropart. Phys. 1503 (03), 057 (2015); arXiv:1501.02553 [hep-th].

  49. S. Nishi and T. Kobayashi, Phys. Rev. D 95, 064001 (2017); arXiv:1611.01906 [hep-th].

  50. Y. A. Ageeva, O. A. Evseev, O. I. Melichev, and V. A. Rubakov, arXiv:1810.00465 [hep-th].

  51. P. Creminelli, K. Hinterbichler, J. Khoury, A. Nicolis, and E. Trincherini, J. High Energy Phys. 1302, 006 (2013); arXiv:1209.3768 [hep-th].

  52. D. A. Easson, I. Sawicki, and A. Vikman, J. Cosmol. Astropart. Phys. 1307, 014 (2013); arXiv:1304.3903 [hep-th].

    Article  Google Scholar 

  53. M. Libanov, S. Mironov, and V. Rubakov, J. Cosmol. Astropart. Phys. 1608 (08), 037 (2016); arXiv:1605.05992 [hep-th].

    Article  MathSciNet  Google Scholar 

  54. R. Kolevatov and S. Mironov, Phys. Rev. D 94, 123516 (2016); arXiv:1607.04099 [hep-th].

  55. T. Kobayashi, Phys. Rev. D 94, 043511 (2016); arXiv:1606.05831 [hep-th].

  56. S. Akama and T. Kobayashi, Phys. Rev. D 95, 064011 (2017); arXiv:1701.02926 [hep-th].

  57. S. Mironov, Universe 5, 52 (2019). https://doi.org/10.3390/universe5020052

    Article  ADS  Google Scholar 

  58. Y. Cai, Y. Wan, H. G. Li, T. Qiu, and Y. S. Piao, J. High Energy Phys. 1701, 090 (2017); arXiv:1610.03400 [gr-qc].

  59. P. Creminelli, D. Pirtskhalava, L. Santoni, and E. Trincherini, J. Cosmol. Astropart. Phys. 1611 (11), 047 (2016); arXiv:1610.04207 [hep-th].

    Article  MathSciNet  Google Scholar 

  60. R. Kolevatov, S. Mironov, N. Sukhov, and V. Volkova, J. Cosmol. Astropart. Phys. 1708 (08), 038 (2017); arXiv:1705.06626 [hep-th].

    Article  MathSciNet  Google Scholar 

  61. Y. Cai and Y. S. Piao, J. High Energy Phys. 1709, 027 (2017); arXiv:1705.03401 [gr-qc].

  62. A. Ijjas, J. Cosmol. Astropart. Phys. 1802 (02), 007 (2018); arXiv:1710.05990 [gr-qc].

    Article  MathSciNet  Google Scholar 

  63. S. Mironov, V. Rubakov, and V. Volkova, J. Cosmol. Astropart. Phys. 1810 (10), 050 (2018); arXiv:1807.08361 [hep-th].

    Article  MathSciNet  Google Scholar 

  64. S. Mironov, V. Rubakov, and V. Volkova, arXiv:1905.06249 [hep-th].

  65. T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Prog. Theor. Phys. 126, 511 (2011); arXiv:1105.5723 [hep-th].

    Article  ADS  Google Scholar 

  66. N. Arkani-Hamed, H. C. Cheng, M. A. Luty, and S. Mukohyama, J. High Energy Phys. 0405, 074 (2004); hep-th/0312099.

    Article  Google Scholar 

  67. D. A. Dobre, A. V. Frolov, J. T. G. Ghersi, S. Ramazanov, and A. Vikman, J. Cosmol. Astropart. Phys. 1803, 020 (2018); arXiv:1712.10272 [gr-qc]. https://doi.org/10.1088/1475-7516/2018/03/020

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to R. Kolevatov and N. Sukhov for productive collaboration and to E. Babichev and A. Vikman for helpful discussions. This work has been supported by the Russian Science Foundation grant 19-12-00393.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. E. Volkova, S. A. Mironov or V. A. Rubakov.

Additional information

Contribution for the JETP special issue in honor of I. M. Khalatnikov’s 100th anniversary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, V.E., Mironov, S.A. & Rubakov, V.A. Cosmological Scenarios with Bounce and Genesis in Horndeski Theory and Beyond. J. Exp. Theor. Phys. 129, 553–565 (2019). https://doi.org/10.1134/S1063776119100236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119100236

Navigation