Skip to main content
Log in

Finkel’stein Nonlinear Sigma Model: Interplay of Disorder and Interaction in 2D Electron Systems

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, I briefly review recent theoretical results derived within the Finkel’stein nonlinear sigma model approach for description of two-dimensional interacting disordered electron systems. The examples include an electron system with two valleys, electrons in a double quantum well, electrons on the surface of a topological insulator, an electron system with superconducting correlations, and the integer quantum Hall effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is instructive for the experts to highlight the difference between Eqs. (37a)–(37e) and that of [83]. First of all, the right hand side of the RG equation for γs in [83] (see Eq. (A12) there) is not proportional to the factor 1 + γs contrary to our Eq. (37b). This means that the Coulomb interaction, γs = –1, is not the fixed point of RG equations of [83] in contradiction with the \(\mathcal{F}\)-invariance of the FNLSM action. Secondly, the RG equation for γt of [83] does not contain the term proportional to t\(\gamma _{c}^{2}\), in contrast to our Eq. (37b). Finally, the RG equation for γc in [83] contains an additional term proportional to tγcln(1 + γs) which is absent in our Eq. (37d). A similar term was reported by Belitz and Kirkpatrick [32] (see Eq. (6.8g) there). This term was criticized by Finkel’stein in [84]: the origin of this term has been attributed to an improper treatment of the gauge invariance in the RG scheme. We note that such terms, divergent for the case of Coulomb interaction, γs = –1, cannot appear in the course of renormalization of \(\mathcal{F}\)-invariant operators, a particular example of which is the Cooper-channel interaction term SC.

REFERENCES

  1. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  2. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

    Article  ADS  Google Scholar 

  3. L. P. Gorkov, A. I. Larkin, and D. E. Khmel’nitskii, JETP Lett. 30, 228 (1979).

    ADS  Google Scholar 

  4. E. Abrahams and T. V. Ramakrishnan, J. Non-Cryst. Solids 35, 15 (1980).

    Article  ADS  Google Scholar 

  5. D. J. Amit, Field Theory, Renormalization Group, and Critical Phenomena (World Scientific, Singapore, 1984).

    Google Scholar 

  6. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Cambridge Univ. Press, Cambridge, 1989).

    MATH  Google Scholar 

  7. F. Wegner, Z. Phys. B 35, 207 (1979).

    Article  ADS  Google Scholar 

  8. L. Schäafer and F. Wegner, Z. Phys. B 38, 113 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  9. K. B. Efetov, A. I. Larkin, and D. E. Kheml’nitskii, Sov. Phys. JETP 52, 568 (1980).

    ADS  Google Scholar 

  10. K. Jüngling and R. Oppermann, Z. Phys. B 38, 93 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  11. A. J. McKane and M. Stone, Ann. Phys. (N.Y.) 131, 36 (1981).

    Article  ADS  Google Scholar 

  12. K. B. Efetov, Sov. Phys. JETP 55, 514 (1982).

    Google Scholar 

  13. A. D. Mirlin and F. Evers, Rev. Mod. Phys. 80, 1355 (2008).

    Article  ADS  Google Scholar 

  14. Special Issue: 50 Years of Anderson Localization, Int. J. Mod. Phys. B 24 (12–13) (2010).

  15. D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977).

    Article  ADS  Google Scholar 

  16. E. Abrahams, P. W. Anderson, and T. V. Ramakrishnan, Phys. Rev. Lett. 43, 718 (1979).

    Article  ADS  Google Scholar 

  17. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky, J. Phys. C 15, 7367 (1982).

    Article  ADS  Google Scholar 

  18. B. L. Altshuler and A. G. Aronov, Sov. Phys. JETP 50, 968 (1979).

    ADS  Google Scholar 

  19. G. Zala, B. N. Narozhny, I. L. Aleiner, Phys. Rev. B 64, 214204 (2001).

    Article  ADS  Google Scholar 

  20. S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M. Pudalov, and M. D’Iorio, Phys. Rev. B 50, 8039 (1994).

    Article  ADS  Google Scholar 

  21. S. V. Kravchenko, W. E. Mason, G. E. Bowker, J. E. Furneaux, V. M. Pudalov, and M. D’Iorio, Phys. Rev. B 51, 7038 (1995).

    Article  ADS  Google Scholar 

  22. W. L. McMillan, Phys. Rev. B 24, 2739 (1981).

    Article  ADS  Google Scholar 

  23. A. M. Finkelstein, Sov. Phys. JETP 57, 97 (1983).

    Google Scholar 

  24. A. M. Finkelstein, JETP Lett. 37, 517 (1983).

    ADS  Google Scholar 

  25. A. M. Finkelstein, JETP Lett. 40, 796 (1984).

    ADS  Google Scholar 

  26. A. M. Finkelstein, Sov. Phys. JETP 59, 212 (1984).

    Google Scholar 

  27. C. Castellani, C. di Castro, P. A. Lee, and M. Ma, Phys. Rev. B 30, 527 (1984).

    Article  ADS  Google Scholar 

  28. C. Castellani, C. di Castro, P. A. Lee, M. Ma, S. Sorella, and E. Tabet, Phys. Rev. B 30, 1596 (1984).

    Article  ADS  Google Scholar 

  29. A. M. Finkelstein, Z. Phys. B 56, 189 (1984).

    Article  ADS  Google Scholar 

  30. C. Castellani and C. di Castro, Phys. Rev. B 34, 5935 (1986).

    Article  ADS  Google Scholar 

  31. A. M. Finkelstein, Electron Liquid in Disordered Conductors, Vol. 14 of Soviet Scientific Reviews, Ed. by I. M. Khalatnikov (Harwood Academic, London, 1990).

  32. D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).

    Article  ADS  Google Scholar 

  33. A. Kamenev and A. Levchenko, Adv. Phys. 58, 197 (2009).

    Article  ADS  Google Scholar 

  34. I. S. Burmistrov, in Strongly Correlated Electrons in Two Dimensions, Ed. by S. V. Kravchenko (Pan Stanford, Singapore, 2017), p. 65; arxiv:1609.07874.

  35. A. Punnoose, Phys. Rev. B 81, 035306 (2010).

    Article  ADS  Google Scholar 

  36. A. Punnoose, Phys. Rev. B 82, 115310 (2010).

    Article  ADS  Google Scholar 

  37. A. M. M. Pruisken, M. A. Baranov, and B. Škorić, Phys. Rev. B 60, 16807 (1999).

    Article  ADS  Google Scholar 

  38. A. Kamenev and A. Andreev, Phys. Rev. B 60, 2218 (1999).

    Article  ADS  Google Scholar 

  39. A. Punnoose and A. M. Finkelstein, Phys. Rev. Lett. 88, 016802 (2001).

    Article  ADS  Google Scholar 

  40. O. Gunawan, Y. P. Shkolnikov, K. Vakili, T. Gokmen, E. P. de Poortere, and M. Shayegan, Phys. Rev. Lett. 97, 186404 (2006).

    Article  ADS  Google Scholar 

  41. O. Gunawan, T. Gokmen, K. Vakili, M. Padmanabhan, E. P. de Poortere, and M. Shayegan, Nat. Phys. 3, 388 (2007).

    Article  Google Scholar 

  42. I. S. Burmistrov and N. M. Chtchelkatchev, Phys. Rev. B 77, 195319 (2008).

    Article  ADS  Google Scholar 

  43. I. S. Burmistrov, I. V. Gornyi, and K. S. Tikhonov, Phys. Rev. B 84, 075338 (2011).

    Article  ADS  Google Scholar 

  44. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  45. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  46. E. J. Koenig, P. M. Ostrovsky, I. V. Protopopov, I. V. Gornyi, I. S. Burmistrov, and A. D. Mirlin, Phys. Rev. B 88, 035106 (2013).

    Article  ADS  Google Scholar 

  47. P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. Lett. 105, 036803 (2010).

    Article  ADS  Google Scholar 

  48. D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989).

    Article  ADS  Google Scholar 

  49. K. A. Parendo, K. H. Sarwa, B. Tan, A. Bhattacharya, M. Eblen-Zayas, N. E. Staley, and A. M. Goldman, Phys. Rev. Lett. 94, 197004 (2005).

    Article  ADS  Google Scholar 

  50. S. J. Lee and J. B. Ketterson, Phys. Rev. Lett. 64, 3078 (1990).

    Article  ADS  Google Scholar 

  51. A. Yazdani and A. Kapitulnik, Phys. Rev. Lett. 74, 3037 (1995).

    Article  ADS  Google Scholar 

  52. Y. Qin, C. L. Vicente, and J. Yoon, Phys. Rev. B 73, 100505(R) (2006).

  53. A. F. Hebard and M. A. Paalanen, Phys. Rev. Lett. 65, 927 (1990).

    Article  ADS  Google Scholar 

  54. G. Sambandamurthy, L. W. Engel, A. Johansson, and D. Shahar, Phys. Rev. Lett. 92, 107005 (2004);

    Article  ADS  Google Scholar 

  55. Phys. Rev. Lett. 94, 017003 (2005).

  56. D. Sherman, G. Kopnov, D. Shahar, and A. Frydman, Phys. Rev. Lett. 108, 177006 (2012).

    Article  ADS  Google Scholar 

  57. B. Sacépé, T. Dubouchet, C. Chapelier, M. Sanquer, M. Ovadia, D. Shahar, M. Feigel’man, and L. Ioffe, Nat. Phys. 7, 239 (2011).

    Article  Google Scholar 

  58. M. Mondal, A. Kamlapure, M. Chand, G. Saraswat, S. Kumar, J. Jesudasan, L. Benfatto, V. Tripathi, and P. Raychaudhuri, Phys. Rev. Lett. 106, 047001 (2011).

    Article  ADS  Google Scholar 

  59. M. Chand, G. Saraswat, A. Kamlapure, M. Mondal, S. Kumar, J. Jesudasan, V. Bagwe, L. Benfatto, V. Tripathi, and P. Raychaudhuri, Phys. Rev. B 85, 014508 (2012).

    Article  ADS  Google Scholar 

  60. G. Lemarié, A. Kamlapure, D. Bucheli, L. Benfatto, J. Lorenzana, G. Seibold, S. C. Ganguli, P. Raychaudhuri, and C. Castellani, Phys. Rev. B 87, 184509 (2013).

    Article  ADS  Google Scholar 

  61. T. I. Baturina, A. Y. Mironov, V. M. Vinokur, M. R. Baklanov, and C. Strunk, Phys. Rev. Lett. 99, 257003 (2007).

    Article  ADS  Google Scholar 

  62. B. Sacépé, C. Chapelier, T. I. Baturina, V. M. Vinokur, M. R. Baklanov, and M. Sanquer, Phys. Rev. Lett. 101, 157006 (2008).

    Article  ADS  Google Scholar 

  63. B. Sacépé, C. Chapelier, T. I. Baturina, V. M. Vinokur, M. R. Baklanov, and M. Sanquer, Nat. Commun. 1, 140 (2010).

    Article  Google Scholar 

  64. T. I. Baturina, S. V. Postolova, A. Yu. Mironov, A. Glatz, M. R. Baklanov, and V. M. Vinokur, Eur. Phys. Lett. 97, 17012 (2012).

    Article  ADS  Google Scholar 

  65. R. Schneider, A. G. Zaitsev, D. Fuchs, and H. von Löhneysen, Phys. Rev. Lett. 108, 257003 (2012).

    Article  ADS  Google Scholar 

  66. R. Schneider, A. G. Zaitsev, D. Fuchs, and H. von Löhneysen, J. Low Temp. Phys. 178, 118 (2014).

    Article  ADS  Google Scholar 

  67. R. Schneider, A. G. Zaitsev, D. Fuchs, and H. von Löhneysen, J. Phys.: Condens. Matter 26, 455701 (2014);

    ADS  Google Scholar 

  68. Eur. Phys. J. B 88, 14 (2015).

  69. A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M. Triscone, Nature (London, U.K.) 456, 624 (2008).

    Article  ADS  Google Scholar 

  70. J. A. Sulpizio, S. Ilani, P. Irvin, and J. Levy, Ann. Rev. Mater. Res. 44, 117 (2014).

    Article  ADS  Google Scholar 

  71. M. Kim, Y. Kozuka, C. Bell, Y. Hikita, and H. Y. Hwang, Phys. Rev. B 86, 085121 (2012).

    Article  ADS  Google Scholar 

  72. K. Ueno, T. Nojima, S. Yonezawa, M. Kawasaki, Y. Iwasa, and Y. Maeno, Phys. Rev. B 89, 020508(R) (2014).

  73. J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, and Y. Iwasa, Science (Washington, DC, U. S.) 338, 1193 (2012).

    Article  ADS  Google Scholar 

  74. J. T. Ye, Y. J. Zhang, M. Yoshida, Y. Saito, and Y. Iwasa, J. Supercond. Nov. Magn. 27, 981 (2014).

    Article  Google Scholar 

  75. K. Taniguchi, A. Matsumoto, H. Shimotani, and H. Takagi, Appl. Phys. Lett. 101, 042603 (2012).

    Article  ADS  Google Scholar 

  76. A. T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna, J. Misewich, and I. Bozovic, Nature (London, U.K.) 472, 458 (2011).

    Article  ADS  Google Scholar 

  77. Y. Taguchi, A. Kitora, and Y. Iwasa, Phys. Rev. Lett. 97, 107001 (2006).

    Article  ADS  Google Scholar 

  78. Y. Taguchi, T. Kawabata, T. Takano, A. Kitora, K. Kato, M. Takata, and Y. Iwasa, Phys. Rev. B 76, 064508 (2007).

    Article  ADS  Google Scholar 

  79. Y. Kasahara, T. Kishiume, T. Takano, K. Kobayashi, E. Matsuoka, H. Onodera, K. Kuroki, Y. Taguchi, and Y. Iwasa, Phys. Rev. Lett. 103, 077004 (2009).

    Article  ADS  Google Scholar 

  80. H. Kotegawa, S. Oshiro, Y. Shimizu, H. Tou, Y. Kasahara, T. Kishiume, Y. Taguchi, and Y. Iwasa, Phys. Rev. B 90, 020503(R) (2014).

  81. E. J. Koenig, A. Levchenko, I. V. Protopopov, I. V. Gornyi, I. S. Burmistrov, and A. D. Mirlin, Phys. Rev. B 92, 214503 (2015).

    Article  ADS  Google Scholar 

  82. I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B 92, 014506 (2015).

    Article  ADS  Google Scholar 

  83. I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. Lett. 117, 017002 (2012).

    Article  ADS  Google Scholar 

  84. M. V. Feigel’man, L. B. Ioffe, V. E. Kravtsov, and E. A. Yuzbashyan, Phys. Rev. Lett. 98, 027001 (2007).

    Article  ADS  Google Scholar 

  85. L. dell’Anna, Phys. Rev. B 88, 195139 (2013).

    Article  ADS  Google Scholar 

  86. A. M. Finkelstein, Phys. B (Amsterdam, Neth.) 197, 636 (1994).

  87. H. Levine, S. B. Libby, and A. M. M. Pruisken, Phys. Rev. Lett. 51, 1915 (1983).

    Article  ADS  Google Scholar 

  88. A. M. M. Pruisken, Nucl. Phys. B 235, 277 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  89. M. A. Baranov, A. M. M. Pruisken, B. Škorić, Phys. Rev. B 60, 16821 (1999).

    Article  ADS  Google Scholar 

  90. M. A. Baranov, I. S. Burmistrov, and A. M. M. Pruisken, Phys. Rev. B 66, 075317 (2002).

    Article  ADS  Google Scholar 

  91. I. S. Burmistrov, Ann. Phys. (N.Y.) 364, 120 (2016).

    Article  ADS  Google Scholar 

  92. S. Hikami, Phys. Lett. B 98, 208 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  93. P. Ostrovsky, T. Nakayama, K. A. Muttalib, P. Wölfle, New J. Phys. 15, 055010 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  94. A. M. M. Pruisken and I. S. Burmistrov, Ann. Phys. (N.Y.) 322, 1265 (2007).

    Article  ADS  Google Scholar 

  95. D. Simonian, S. V. Kravchenko, M. P. Sarachik, and V. M. Pudalov, Phys. Rev. Lett. 79, 2304 (1997).

    Article  ADS  Google Scholar 

  96. S. A. Vitkalov, K. James, B. N. Narozhny, M. P. Sarachik, and T. M. Klapwijk, Phys. Rev. B 67, 113310 (2003).

    Article  ADS  Google Scholar 

  97. V. M. Pudalov, M. E. Gershenson, H. Kojima, G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett. 91, 126403 (2003).

    Article  ADS  Google Scholar 

  98. G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, A. K. Bakarov, and D. V. Dmitriev, Phys. Rev. B 84, 075337 (2011).

    Article  ADS  Google Scholar 

  99. A. Punnoose and A. M. Finkelstein, Science (Washington, DC, U. S.) 310, 289(2005).

    Article  ADS  Google Scholar 

  100. M. R. Zirnbauer, J. Math. Phys. 37, 4986 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  101. A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).

    Article  ADS  Google Scholar 

  102. L. dell’Anna, Nucl. Phys. B 758, 255 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  103. L. dell’Anna, Ann. Phys. 529, 1600317 (2017).

    Article  MathSciNet  Google Scholar 

  104. Y. Liao, A. Levchenko, and M. S. Foster, Ann. Phys. (N.Y.) 386, 97 (2017).

    Article  ADS  Google Scholar 

  105. F. Wegner, Z. Phys. B 36, 209 (1980).

    Article  ADS  Google Scholar 

  106. D. Höf, F. Wegner, Nucl. Phys. B 275, 561 (1986).

    Article  ADS  Google Scholar 

  107. F. Wegner, Nucl. Phys. B 280, 193 (1987);

    Article  ADS  Google Scholar 

  108. Nucl. Phys. B 280, 210 (1987).

  109. C. Castellani and L. Peliti, J. Phys. A 19, L429 (1986).

    Article  ADS  Google Scholar 

  110. I. V. Lerner, Phys. Lett. A 133, 253 (1988).

    Article  ADS  Google Scholar 

  111. B. L. Al’tshuler, V. E. Kravtsov, and I. V. Lerner, Sov. Phys. JETP 64, 1352 (1986).

    Google Scholar 

  112. V. E. Kravtsov, I. V. Lerner, and V. I. Yudson, Sov. Phys. JETP 67, 1441 (1988).

    Google Scholar 

  113. I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, JETP Lett. 106, 272 (2017).

    Article  ADS  Google Scholar 

  114. E. V. Repin and I. S. Burmistrov, Phys. Rev. B 94, 245442 (2016).

    Article  ADS  Google Scholar 

  115. I. A. Gruzberg, A. D. Mirlin, and M. R. Zirnbauer, Phys. Rev. B 87, 125144 (2013).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to my coauthors M. Baranov, N. Chtchelkatchev, I. Gornyi, E. König, A. Levchenko, A. Mirlin, P. Ostrovsky, I. Protopopov, A. Pruisken, K. Tikhonov for fruitful collaboration on the problems discussed in this review. I am indebted to A. Germanenko, D. Knyazev, A. Kuntsevich, D. de Lang, G. Minkov, L. Ponomarenko, V. Pudalov, and A. Sherstobitov for detailed discussions of their experimental results. I thank M. Feigel’man, A. Finkelstein, Y. Fominov, A. Ioselevich, Y. Makhlin, M. Skvortsov and the other members of Landau Institute for useful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Burmistrov.

Additional information

Contribution for the JETP special issue in honor of I. M. Khalatnikov’s 100th anniversary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burmistrov, I.S. Finkel’stein Nonlinear Sigma Model: Interplay of Disorder and Interaction in 2D Electron Systems. J. Exp. Theor. Phys. 129, 669–679 (2019). https://doi.org/10.1134/S1063776119100029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119100029

Navigation