Skip to main content
Log in

Excitation of Surface Waves during by an Inhomogeneous Electromagnetic Wave Incident on the Plasma Boundary

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have studied the excitation of surface plasma waves during the propagation of a cylindrical electromagnetic wave in a layered plasma–dielectric medium. The dielectric—vacuum—plasma and vacuum–plasma–plasma layers have been considered. It is shown that no surface waves are excited by the cylindrical electromagnetic wave at the plasma–dielectric boundary (like in the case of a plane wave). A surface wave in a layered medium is excited in a quite narrow range of frequencies and angles of propagation. We have calculated the structures of the electromagnetic field and the electromagnetic energy flux and determined the integral reflection and transmission coefficients using both numerical an analytic asymptotic methods. It is shown that the contribution of the field from the lateral wave is negligibly small in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. It should be noted that Eq. (18) is satisfied identically for kx0 = 0. However, it follows from the solution to Eq. (8) that the field in this case for A = 0 is identical zero.

  2. We assume that \(\sqrt { - 1 \pm i0} \) = ±i.

  3. The modulus of the first expression in (5) changes from |A| – |B| to |A| + |B|, i.e., is constant for B = 0 and can vanish for |A| = |B|.

  4. In the vicinity of point ω = 0, kz = 0, the solution to Eq. (18) was not analyzed in detail.

REFERENCES

  1. A. Sommerfeld, Math. Ann. 47, 317 (1896).

    Article  MathSciNet  Google Scholar 

  2. J. Zenneck, Ann. Phys. 328, 846 (1907).

    Article  Google Scholar 

  3. A. Sommerfeld, Ann. Phys. 333, 665 (1909).

    Article  Google Scholar 

  4. H. Weyl, Ann. Phys. 365, 481 (1919).

    Article  Google Scholar 

  5. V. Fock, Ann. Phys. 409, 401 (1933).

    Article  Google Scholar 

  6. B. van der Pol, Physica 2, 843 (1935).

    Article  ADS  Google Scholar 

  7. F. Frank and R. Mizes, Differential and Integral Equations of Mathematical Physics (United Sci. Tech. Press, 1937), Part 2.

  8. Yu. B. Bashkuev, V. B. Khaptanov, and M. G. Dembelov, Tech. Phys. Lett. 36, 136 (2010).

    Article  ADS  Google Scholar 

  9. V. I. Baibakov, V. N. Datsko, and Yu. V. Kistovich, Sov. Phys. Usp. 32, 378 (1989).

    Article  ADS  Google Scholar 

  10. V. N. Datsko and A. A. Kopylov, Phys. Usp. 51, 101 (2008).

    Article  ADS  Google Scholar 

  11. A. V. Kukushkin, Phys. Usp. 52, 755 (2009).

    Article  ADS  Google Scholar 

  12. A. V. Kukushkin, A. A. Rukhadze, and K. Z. Rukhadze, Phys. Usp. 55, 1124 (2012).

    Article  ADS  Google Scholar 

  13. I. N. Kartashov and M. V. Kuzelev, Plasma Phys. Rep. 40, 650 (2014).

    Article  ADS  Google Scholar 

  14. K. S. Bekhovskaya, I. L. Bogdankevich, P. S. Strelkov, V. P. Tarakanov, and D. K. Ul’yanov, Plasma Phys. Rep. 37, 1119 (2011).

    Article  ADS  Google Scholar 

  15. P. S. Strelkov, I. E. Ivanov, and D. V. Shumeiko, Plasma Phys. Rep. 38, 488 (2012).

    Article  ADS  Google Scholar 

  16. P. S. Strelkov, I. E. Ivanov, D. V. Shumeiko, and V. P. Tarakanov, Plasma Phys. Rep. 40, 640 (2014).

    Article  ADS  Google Scholar 

  17. I. N. Kartashov, M. V. Kuzelev, P. S. Strelkov, and V. P. Tarakanov, Plasma Phys. Rep. 44, 289 (2018)].

    Article  ADS  Google Scholar 

  18. M. V. Kuzelev, A. A. Rukhadze, and P. S. Strelkov, Plasma Relativistic Microwave Electronics (Lenand, Moscow, 2018) [in Russian].

    MATH  Google Scholar 

  19. M. V. Kuzelev and N. G. Orlikovskaya, J. Exp. Theor. Phys. 123, 1090 (2016).

    Article  ADS  Google Scholar 

  20. I. N. Kartashov, M. V. Kuzelev, and A. A. Rukhadze, Plasma Phys. Rep. 30, 56 (2004).

    Article  ADS  Google Scholar 

  21. I. N. Kartashov, M. V. Kuzelev, and A. A. Rukhadze, Plasma Phys. Rep. 35, 169 (2009).

    Article  ADS  Google Scholar 

  22. A. F. Aleksandrov, V. M. Shibkov, and L. V. Shibkova, High Temp. 48, 611 (2010).

    Article  Google Scholar 

  23. V. M. Shibkov, L. V. Shibkova, V. G. Gromov, A. A. Karachev, and R. S. Konstantinovskii, High Temp. 49, 155 (2011).

    Article  Google Scholar 

  24. G. P. Kuzmin, I. M. Minaev, K. Z. Rukhadze, V. P. Tarakanov, and O. V. Tikhonevich, J. Comm. Technol. Electron. 57, 536 (2012).

    Article  Google Scholar 

  25. N. N. Bogachev, I. L. Bogdankevich, N. G. Gusein-zade, and A. A. Rukhadze, Plasma Phys. Rep. 41, 792 (2015).

    Article  ADS  Google Scholar 

  26. V. A. Es’kin, A. V. Ivoninsky, A. V. Kudrin, and L. L. Popova, J. Exp. Theor. Phys. 124, 202 (2017).

    Article  ADS  Google Scholar 

  27. V. A. Es’kin, A. V. Ivoninsky, and A. V. Kudrin, Plasma Phys. Rep. 44, 245 (2018).

    Article  ADS  Google Scholar 

  28. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer, Berlin, 1988).

    Book  Google Scholar 

  29. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).

  30. S. A. Maier, Plasmonics: Fundamentals and Applications (RKhD, Moscow, Izhevsk, 2011; Springer, Berlin, Heidelberg, 2007).

  31. M. V. Kuzelev, Plasma Phys. Rep. 44, 498 (2018).

    Article  ADS  Google Scholar 

  32. A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer, Heidelberg, 1984; Vyssh. Shkola, Moscow, 1988).

    Book  Google Scholar 

  33. A. V. Nemykin, S. V. Perminov, L. L. Frumin, and D. A. Shapiro, Quantum Electron. 45, 240 (2015).

    Article  ADS  Google Scholar 

  34. I. M. Akhmedzhanov, Quantum Electron. 42, 934 (2012).

    Article  Google Scholar 

  35. S. A. Uryupin and A. A. Frolov, Quantum Electron. 43, 1132 (2013).

    Article  ADS  Google Scholar 

  36. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1968).

    Google Scholar 

  37. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, The Theory of Waves (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  38. V. A. Il’in and E. G. Poznyak, Principles of Mathematical Analysis, Part 2 (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  39. M. V. Kuzelev, Wave Phenomena in Dispersive Media (Lenand, Moscow, 2017) [in Russian].

    Google Scholar 

  40. L. M. Brekhovskikh, Waves in Layered Media (Akad. Nauk SSSR, Moscow, 1957; Academic, New York, 1980).

  41. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. N. Kartashov or M. V. Kuzelev.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartashov, I.N., Kuzelev, M.V. Excitation of Surface Waves during by an Inhomogeneous Electromagnetic Wave Incident on the Plasma Boundary. J. Exp. Theor. Phys. 129, 298–311 (2019). https://doi.org/10.1134/S106377611907015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611907015X

Navigation