Skip to main content
Log in

Effective Velocity of the State Switching Front in a Quasi-One-Dimensional Nanosystem upon Multiple New-Phase Domain Formation

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The kinetics of state switching fronts plays an important role in controlling nanodevices and the properties of many quasi-one-dimensional objects in physics, chemistry, and biology. In active media, this process is accompanied by the interaction of the state switching front with excitations in the bulk of the material. The propagation of the metastable-state switching front from the sample boundary with the absorption of spontaneously forming new-phase domains in the bulk is considered. The corresponding statistical-kinetic problem is solved by calculating the distribution functions of the “relay-race” path lengths and travel times for the edge-domain boundary. The related problem of the influence of uncontrolled noise on the propagation of signals in transmission lines is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. One-Dimensional Nanostructures, Lecture Notes in Nanoscale Science and Technology, Ed. by Z. M. Wang (Springer, New York, 2008).

    Google Scholar 

  2. G. W. Burr, M. J. Breitwisch, M. Franceschini, et al., J. Vacuum Sci. Technol. B 28, 223 (2010).

    Article  ADS  Google Scholar 

  3. J. A. Kittl and Q. Z. Hang, Thin Solid Films 290291, 473 (1996).

    Article  ADS  Google Scholar 

  4. X. Sun, B. Yu, G. Ng, and M. Meyyappan, in One-Dimensional Nanostructures, Lecture Notes in Nanoscale Science and Technology, Ed. by Z. M. Wang (Springer, New York, 2008), Vol. 3, p. 273.

    Google Scholar 

  5. A. N. Kolmogopov, Izv. Akad. Nauk SSSP, Ser. Mat. 3, 355 (1937).

    Google Scholar 

  6. W. A. Johnson and P. A. Mehl, Trans. AIMME 135, 416 (1939).

    Google Scholar 

  7. M. Avramy, J. Chem. Phys. 7, 1103 (1939).

    Article  ADS  Google Scholar 

  8. B. V. Petukhov, J. Exp. Theor. Phys. 114, 988 (2012).

    Article  ADS  Google Scholar 

  9. A. S. Mikhailov, L. Schimansky-Geier, and W. Ebeling, Phys. Lett. A 96, 453 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Fort and T. Pujol, Rep. Prog. Phys. 71, 086001 (2008).

    Article  ADS  Google Scholar 

  11. M. Löcher, D. Cigna, and E. R. Hunt, Phys. Rev. Lett. 80, 5212 (1998).

    Article  ADS  Google Scholar 

  12. J. Garcia-Ojalvo and J. M. Sancho, Noise in Spatially Extended Systems (Springer Science, New York, 1999).

    Book  Google Scholar 

  13. M. K. Verma, A. Kumar, and A. Pattanayak, J. Exp. Theor. Phys. 127, 549 (2018).

    Article  ADS  Google Scholar 

  14. V. A. Benderskii and E. I. Kats, J. Exp. Theor. Phys. 116, 1 (2013).

    Article  ADS  Google Scholar 

  15. V. S. Anishchenko, A. B. Neiman, F. Moss, and L. Shimanskii-Gaier, Phys. Usp. 42, 7 (1999).

    Article  ADS  Google Scholar 

  16. L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Eur. Phys. J. B 69, 1 (2009).

    Article  ADS  Google Scholar 

  17. M. D. McDonnell and D. Abbott, PLOS Comput. Biol. 5, e1000348 (2009).

    Article  ADS  Google Scholar 

  18. K. Sekimoto, Phys. A (Amsterdam, Neth.) 128, 132 (1984).

  19. K. Sekimoto, Phys. A (Amsterdam, Neth.) 125, 261 (1984).

  20. E. Ben-Naim and P. L. Krapivsky, Phys. Rev. 54, 3562 (1996).

    Article  ADS  Google Scholar 

  21. B. V. Petukhov, Semiconductors 47, 628 (2013).

    Article  ADS  Google Scholar 

  22. S. Allende, D. Altbir, E. Salcedo, et al., J. Appl. Phys. 104, 013907 (2008).

    Article  ADS  Google Scholar 

  23. H. Chen, P. K. Varshney, S. M. Kay, and J. H. Michels, IEEE Trans. Signal Proc. 55, 3172 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Petukhov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petukhov, B.V. Effective Velocity of the State Switching Front in a Quasi-One-Dimensional Nanosystem upon Multiple New-Phase Domain Formation. J. Exp. Theor. Phys. 129, 312–318 (2019). https://doi.org/10.1134/S1063776119070082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119070082

Navigation