Skip to main content
Log in

Second-Order Stationary Solutions for Fermions in an External Coulomb Field

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have studied self-conjugate second-order equations with spinor wavefunctions for fermions moving in an external Coulomb field. For stationary states, the equations are characterized by separated states with positive and negative energies, which render probabilistic interpretation possible. For the Coulomb field of attraction, the energy spectrum of the second-order equation coincides with the spectrum of the Dirac equation, while the probability densities of states are slightly different. For a Coulomb field of repulsion, there exists an impermeable potential barrier with radius depending on the classical electron radius and on the electron energy. The existence of the impermeable barrier does not contradict the results of experiment for determining the inner electron structure and does not affect (in the lowest order of perturbation theory) the Coulomb electron scattering cross section. The existence of the impermeable barrier can lead to positron confinement in supercritical nuclei with Z ≥ 170 in case of realization of spontaneous emission of vacuum electron–positron pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon, Oxford, 1958).

    Book  MATH  Google Scholar 

  2. V. P. Neznamov, Theor. Math. Phys. 197, 1823 (2018).

    Article  MathSciNet  Google Scholar 

  3. V. P. Neznamov and I. I. Safronov, J. Exp. Theor. Phys. 127, 647 (2018). arxiv:1809.08940

    Article  ADS  Google Scholar 

  4. V. P. Neznamov, I. I. Safronov, and V. E. Shemarulin, J. Exp. Theor. Phys. 127, 684 (2018). arxiv:1810.01960

    Article  ADS  Google Scholar 

  5. V. P. Neznamov, I. I. Safronov, and V. E. Shemarulin, J. Exp. Theor. Phys. 128, 64 (2019), arxiv:1904.05791

  6. L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

    Article  ADS  Google Scholar 

  7. D. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill College, New York, 1965).

    MATH  Google Scholar 

  8. I. Ya. Pomeranchuk and Ya. A. Smorodinsky, J. Phys. USSR 9, 97 (1945).

    Google Scholar 

  9. W. Pieper and W. Griener, Zs. Phys. 218, 327 (1969).

  10. Ya. B. Zeldovich and V. S. Popov, Sov. Phys. Usp. 14, 673 (1972).

    Article  ADS  Google Scholar 

  11. A. S. Davydov, Quantum Mechanics (Fizmatlit, Moscow, 1973; Pergamon, Oxford, 1965).

  12. K. M. Case, Phys. Rev. 95, 1323 (1954).

    Article  ADS  MathSciNet  Google Scholar 

  13. V. P. Neznamov and A. J. Silenko, J. Math. Phys. 50, 122302 (2009); arXiv:0906.2069 [math-ph].

    Article  ADS  MathSciNet  Google Scholar 

  14. V. P. Neznamov, Phys. Part. Nucl. 37, 86 (2006).

    Article  Google Scholar 

  15. V. P. Neznamov, Phys. Part. Nucl. 43, 15 (2012).

    Article  Google Scholar 

  16. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Fizmatlit, Moscow, 2006; Pergamon, Oxford, 1982).

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1963; Pergamon, New York, 1977).

  18. B. L. Voronov, D. M. Gitman, and I. V. Tyutin, Theor. Math. Phys. 150, 34 (2007).

    Article  Google Scholar 

  19. D. M. Gitman, I. V. Tyutin, and B. L. Voronov, Self-Adjoint Etensions in Quantum Mechanics (Springer Science, New York, 2012).

    Book  MATH  Google Scholar 

  20. H. Pruefer, Math. Ann. 95, 499 (1926).

    Article  MathSciNet  Google Scholar 

  21. I. Ulehla andM. Haviček, Appl. Math. 25, 358 (1980).

  22. I. Ulehla, M. Haviček, and J. Hořejši, Phys. Lett. A 82, 64 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  23. I. Ulehla, Preprint RL-82-095 (Rutherford Laboratory, 1982).

    Google Scholar 

  24. H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957).

    Book  MATH  Google Scholar 

  25. J. Dittrich and P. Exner, J. Math. Phys. 26, 2000 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Gabrielse, D. Hanneke, T. Kinoshita, M. Noi, and B. Odom, Phys. Rev. Lett. 97, 030802 (2006).

    Article  ADS  Google Scholar 

  27. V. P. Neznamov, I. I. Safronov, and V. E. Shemarulin, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., No. 1, 63 (2018).

Download references

ACKNOWLEDGMENTS

We are grateful to G.M. Ter-Akop’yan, K.O. Vlasov, M.V. Gorbatenko, V.A. Zhmailo, A.I. Milshtein, and V.E. Shemarulin for fruitful discussions. Thanks are due to V.E. Novoselova for essential technical support in preparing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Neznamov.

Additional information

Translated by N. Wadhwa

Pruefer Transformation and Boundary Conditions

Pruefer Transformation and Boundary Conditions

For numerical solution of Eqs. (39) and (40), we have used the Pruefer transformation [20–23].

By way of example, let us consider Eq. (39).

For function f(r) = rF(r), Eq. (39) has form

$$\frac{{{{d}^{2}}f(r)}}{{d{{r}^{2}}}} + 2({{E}_{{{\text{Schr}}}}} - U_{{{\text{eff}}}}^{2}(r))f(r) = 0.$$
((A.1))

Let us assume that

$$\begin{gathered} f(r) = P(r)\sin \Phi (r), \\ \frac{{df(r)}}{{dr}} = P(r)\cos \Phi (r). \\ \end{gathered} $$
((A.2))

Then

$$\frac{{f(r)}}{{df(r){\text{/}}dr}} = \tan \Phi (r)$$
((A.3))

and Eq. (A.1) can be written in the form of the following system of first-order differential equations:

$$\frac{{d\Phi }}{{dr}} = {{\cos }^{2}}\Phi + 2({{E}_{{{\text{Schr}}}}} - U_{{{\text{eff}}}}^{F}){{\sin }^{2}}\Phi ,$$
((A.4))
$$\frac{{d\ln P}}{{dr}} = (1 - 2({{E}_{{{\text{Schr}}}}} - U_{{{\text{eff}}}}^{F}))\sin \Phi \cos \Phi .$$
((A.5))

It should be noted that Eq. (A.5) must be solved after determining eigenvalues εn and eigenfunctions Φn(r) from Eq. (A.4)

For bound state with r → ∞, we get

$$\begin{gathered} \tan \Phi {{{\text{|}}}_{{r \to \infty }}} = - \frac{1}{{\sqrt {1 - {{\varepsilon }^{2}}} }}, \\ \Phi {{{\text{|}}}_{{r \to \infty }}} = - \arctan \frac{1}{{\sqrt {1 - {{\varepsilon }^{2}}} }} + k\pi . \\ \end{gathered} $$
((A.6))

For exponentially increasing solutions for r → ∞, we have

$$\begin{gathered} \tan \Phi {{{\text{|}}}_{{r \to \infty }}} = \frac{1}{{\sqrt {1 - {{\varepsilon }^{2}}} }}, \\ \Phi {{{\text{|}}}_{{r \to \infty }}} = \arctan \frac{1}{{\sqrt {1 - {{\varepsilon }^{2}}} }} + k\pi . \\ \end{gathered} $$
((A.7))

In expressions (A.6) and (A.7), k = 0, ±1, ±2, … .

The numerical method for solving equations of type (A.4), (A.5) with asymptotic forms (A.6) and (A.7) is described in detail in [3–5, 27].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neznamov, V.P., Safronov, I.I. Second-Order Stationary Solutions for Fermions in an External Coulomb Field. J. Exp. Theor. Phys. 128, 672–683 (2019). https://doi.org/10.1134/S1063776119050145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119050145

Navigation