Skip to main content
Log in

Possible Explanation of the Geograv Detector Signal during the Explosion of SN 1987A in Modified Gravity Models

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A change in the law of attraction in some regimes is predicted in the modified gravity models being actively developed at present. The set of up-to-date observational data leaves a wide range of admissible parameters for the theory. In this paper, we consider the possibility that the signal recorded by the Geograv resonant gravitational-wave detector in 1987 during the explosion of SN 1987A was produced by an abrupt change in the metric during the passage of a powerful neutrino flux through the detector. Such an impact on the detector is possible, in particular, in extended scalar–tensor theories in which the local matter density gradient affects the gravitational force. The first short neutrino pulse emitted at the initial stage of stellar core collapse before the onset of neutrino opacity could exert a major influence on the detector, because it could produce the detector response at the first resonance frequency. In contrast, the influence of the subsequent broad pulse (with a duration of several seconds) in the resonant detector is exponentially suppressed, despite the fact that the second pulse carries an order-of-magnitude more neutrino energy, and it could generate a signal in the LSD neutrino detector. This explains the time delay of 1.4 s between the Geograv and LSD signals. The consequences of this effect of modified gravity for future LIGO/Virgo observations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Note that such theories satisfy the local gravitational observations (for example, in the Solar system) owing to the Vainshtein mechanism [18] (for a review, see [19])

  2. Note that in the original version of Horndeski’s theory [25] the second term in (6) is absent.

  3. We are grateful to the referee of this paper who pointed to this possibility.

REFERENCES

  1. J. Bahcall, Neutrino Astrophysics (Cambridge Univ. Press, Cambridge, 1989).

    Google Scholar 

  2. V. L. Dadykin, G. T. Zatsepin, V. B. Korchagin, et al., JETP Lett. 45, 593 (1987).

    ADS  Google Scholar 

  3. L. Stella and L. Treves, Astron. Astrophys. 185, L5 (1987).

    ADS  Google Scholar 

  4. W. Hillebrandt, P. Hoflich, and P. Kafka, Astron. Astrophys. 180, L20 (1987).

    ADS  Google Scholar 

  5. A. de Rujula, Phys. Lett. B 193, 514 (1987).

    Article  ADS  Google Scholar 

  6. V. S. Berezinsky, C. Castagnoli, V. I. Dokuchaev, et al., Nuovo Cim. 11, 287 (1988).

    Article  ADS  Google Scholar 

  7. V. L. Dadykin, G. T. Zatsepin, and O. G. Ryazhskaya, Sov. Phys. Usp. 32, 459 (1989).

    Article  ADS  Google Scholar 

  8. V. S. Imshennik and D. K. Nadezhin, Usp. Fiz. Nauk 156, 561 (1988).

    Article  Google Scholar 

  9. V. S. Imshennik and O. G. Ryazhskaya, Astron. Lett. 30, 14 (2004).

    Article  ADS  Google Scholar 

  10. G. S. Bisnovatyi-Kogan, S. G. Moiseenko, and N. V. Ardelyan, Phys. At. Nucl. 81, 266 (2018).

    Article  Google Scholar 

  11. F. Vissani, J. Phys. G: Nucl. Part. Phys. 42, 013001 (2015); arXiv:1409.4710 [astro-ph.HE].

    Article  ADS  Google Scholar 

  12. B. P. Abbott, R. Abbott, T. D. Abbott, et al., Phys. Rev. Lett. 119, 161101 (2017); arXiv:1710.05832[gr-qc].

  13. E. Amaldi, P. Bonifazi, M. G. Castellano, et al., Europhys. Lett. 3, 1325 (1987).

    Article  ADS  Google Scholar 

  14. M. Aglietta, A. Castellina, W. Fulgione, et al., Nuovo Cim. C 14, 171 (1991).

    Article  ADS  Google Scholar 

  15. Yu. V. Baryshev, Astrophysics 40, 244 (1997).

    Article  ADS  Google Scholar 

  16. M. Crisostomi, K. Koyama, and G. Tasinato, J. Cosmol. Astropart. Phys. 04, 044 (2016); arXiv:1602.03119 [hep-th].

  17. J. Ben Achour, D. Langlois, and K. Noui, Phys. Rev. D 93, 124005 (2016); arXiv:1602.08398 [gr-qc].

  18. A. I. Vainshtein, Phys. Lett. B 39, 393 (1972).

    Article  ADS  Google Scholar 

  19. E. Babichev and C. Deffayet, Class. Quantum Grav. 30, 184001 (2013); arXiv:1304.7240 [gr-qc].

  20. A. V. Zasov and K. A. Postnov, General Astrophysics (Vek 2, Fryazino, 2016) [in Russian].

  21. G. T. Zatsepin, JETP Lett. 8, 205 (1968).

    ADS  Google Scholar 

  22. D. S. Gorbunov and V. A. Rubakov, Introduction to the Early Universe Theory: The Hot Big Bang Theory (URSS, Moscow, 2016) [in Russian].

    MATH  Google Scholar 

  23. T. Kobayashi, Y. Watanabe, and D. Yamauchi, Phys. Rev. D 91, 064013 (2015); arXiv:1411.4130 [gr-q]c.

    Article  ADS  Google Scholar 

  24. R. Saito, D. Yamauchi, S. Mizuno, et al., Astropart. Phys. 06, 008 (2015); arXiv:1503.01448 [gr-qc].

  25. G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).

    Article  MathSciNet  Google Scholar 

  26. E. Amaldi and G. Pizzella, in Astrophysics, Quants and Theory of Relativity, Collection of Articles (Mir, Moscow, 1982), p. 241 [in Russian].

  27. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1965; Pergamon Press, New York, 1986).

  28. D. K. Nadezhin, Astrophys. Space Sci. 53, 131 (1978).

    Article  ADS  Google Scholar 

  29. J. K. Becker, F. Halzen, A. O’Murchadha, et al., arXiv:1003.4710 [astro-ph.HE].

  30. B. P. Abbott, R. Abbott, T. D. Abbott, et al., Astrophys. J. Lett. 848, L12 (2017); arXiv:1710.05833 [astro-ph.HE].

Download references

Funding

This research was supported by the CNRS/RFBRCooperation program for 2018–2020 no. 1985 (France), Russian Foundation for Basic Research (project no. 18-52-15001 CNRS) (Russia) “Modified gravity and black holes: noncontradictory models and exterimental manifestations,” and CNRS/INSU National program of cosmology and galaxies (France).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. N. Eroshenko, E. O. Babichev, V. I. Dokuchaev or A. S. Malgin.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eroshenko, Y.N., Babichev, E.O., Dokuchaev, V.I. et al. Possible Explanation of the Geograv Detector Signal during the Explosion of SN 1987A in Modified Gravity Models. J. Exp. Theor. Phys. 128, 599–606 (2019). https://doi.org/10.1134/S1063776119030166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119030166

Navigation