Skip to main content
Log in

On the Influence of Magnetic Field on the Probability of Diffusing Particle Capture by Absorbing Traps

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The influence of a magnetic field on the capture of diffusing particles into traps is considered. It is shown that the survival probability for particles in a medium with adsorbing traps in a magnetic field depends on the magnetic field strength; expressions for temporal asymptotic forms of the survival probabilities in media with traps in a magnetic field are derived. The magnetic field influence on the survival probability is determined by a change in the curvature of diffusion trajectories due to rotation of particles in the magnetic field under the action of the Lorentz force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. E. W. Montroll and G. H. Weiss, J. Math Phys. 6, 167 (1965).

    Article  ADS  Google Scholar 

  2. A. A. Ovchinnikov and A. A. Belyi, Theor. Exp. Chem. 2, 405 (1966).

    Article  Google Scholar 

  3. G. V. Ryazanov, Sov. J. Theor. Math. Phys. 10, 181 (1972).

    Article  Google Scholar 

  4. B. Ya. Balagurov and V. G. Vaks, Sov. Phys. JETP 38, 799 (1974).

    ADS  Google Scholar 

  5. M. Donsker and S. Varadhan, Commun. Pure Appl. Math. 28, 525 (1975).

    Article  Google Scholar 

  6. M. Donsker and S. Varadhan, Commun. Pure Appl. Math. 32, 721 (1979).

    Article  Google Scholar 

  7. F. Benitez, C. Duclut, H. Chaté, B. Delamotte, I. Dornic, and M. A. Muñoz, Phys. Rev. Lett. 117, 100601 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  8. Sang Bub Lee, In Chan Kim, C. A. Miller, and S. Torquato, Phys. Rev. B 39, 11833 (1989).

    Article  ADS  Google Scholar 

  9. I. Fouxon and M. Holzner, Phys. Rev. E 94, 022132 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  10. N. Felekidis, A. Melianas, and M. Kemerink, Phys. Rev. B 94, 035205 (2016).

    Article  ADS  Google Scholar 

  11. V. Sapozhnikov, J. Phys. A: Math. Gen. 27, L151 (1994).

    Article  ADS  Google Scholar 

  12. A. Ordemann, G. Berkolaiko, S. Havlin, and A. Bunde, Phys. Rev. E 61, 1005 (2000).

    Article  ADS  Google Scholar 

  13. P. Grassberger and I. Procaccia, Phys. Rev. A 26, 3686 (1982).

    Article  ADS  Google Scholar 

  14. B. Movaghar, B. Pohlmann, and D. Würtz, Phys. Rev. A 29, 1568 (1984).

    Article  ADS  Google Scholar 

  15. V. Mehra and P. Grassberger, Phys. D (Amsterdam, Neth.) 168, 244 (2002).

  16. V. E. Arkhincheev, JETP Lett. 67, 545 (1998).

    Article  ADS  Google Scholar 

  17. V. E. Arkhincheev, AIP Conf. Proc. 553, 231 (2001).

    Article  ADS  Google Scholar 

  18. V. E. Arkhincheev, J. Exp. Theor. Phys. 124, 275 (2017).

    Article  ADS  Google Scholar 

  19. Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50, 77 (1983).

    Article  ADS  Google Scholar 

  20. A. Stanley, K. Kang, S. Redner, and R. L. Blumberg, Phys. Rev. Lett. 51, 1223 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  21. P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, U. S., 1979).

    Google Scholar 

  22. P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization (World Scientific, Singapore, 2000).

    Book  MATH  Google Scholar 

  23. U. M. B. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani, Phys. Rep. 461, 111 (2008).

    Article  ADS  Google Scholar 

  24. P. L. Krapivsky, S. Redner, and Eli Ben-Naim, A Kinetic View of Statistical Physics (Cambridge Univ. Press, Cambridge, 2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Arkhincheev.

Additional information

Translated by N. Wadhwa

Effect of External Fields on the Temporal Asymptotic Form of the Survival Probability in Media with Absorbing Traps

Effect of External Fields on the Temporal Asymptotic Form of the Survival Probability in Media with Absorbing Traps

The electric field is introduced into the problem of diffusion in media with absorbing traps in the standard manner as anisotropy in the direction along and against the electric field. Accordingly, the diffusion equation in the electric field assumes the form

$$\frac{{\partial W(x,t)}}{{\partial t}} = D\frac{{{{\partial }^{2}}W(x,t)}}{{\partial {{t}^{2}}}} - {v}\frac{{\partial W(x,t)}}{{\partial x}}.$$
((A.1))

Here, \({v}\) = μE is the drift velocity of particles in electric field E and μ is the particle mobility. The initial and boundary conditions are imposed analogously to conditions (7) formulated above. Accordingly, we seek the solution as before in the form

$$W(x,t;E) = \sum\limits_{n = 0}^\infty {{{c}_{n}}{{\varphi }_{n}}\exp ( - {{E}_{n}}t).} $$
((A.2))

The expressions for eigenfunctions change as follows in this case:

$${{\varphi }_{n}} = \exp \left( {\frac{{{v}(x - {{x}_{i}})}}{{2D}}} \right)\sin ({{k}_{n}}(x - {{x}_{i}})),$$
((A.3))

and eigenvalues are defined as

$${{E}_{n}} = Dk_{n}^{2} + \frac{{{{{v}}^{2}}}}{{4D}}.$$
((A.4))

Accordingly, in the mean field approximation, we obtain

$$\bar {W}(t;E) \propto \exp \left( { - \frac{{{{{v}}^{2}}t}}{{4D}}} \right).$$
((A.5))

Over long time intervals, the asymptotic form of the survival probability of particles diffusing in a medium with traps is determined by fluctuations of the trap concentration, i.e., by regions free of traps due to fluctuations. It is the existence of such fluctuation regions that determines the temporal asymptotic forms of the particle survival probability in media with traps. According to [4], we must average expression (A.2) derived above over the random distribution of traps. (In this study, this distribution is assumed to be of the Poisson type.) Thus, the asymptotic form of the solution in the fluctuation region is defined by the following expression (see [18] for details):

$$W(t;E)\, \approx \,\sum\limits_{n = 0}^\infty {\int\limits_0^\infty {{\text{exp}}\left( { - D\frac{{{{\pi }^{2}}{{{(2n\, + \,1)}}^{2}}}}{{{{l}^{2}}}}t\, - \frac{{{v}l}}{{4D}}\, - \,cl} \right)dl.} } $$
((A.6))

Thus, the introduction of external field into the problem in question leads to a new exponential factor exp(–\({v}\)l/4D).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhincheev, V.E. On the Influence of Magnetic Field on the Probability of Diffusing Particle Capture by Absorbing Traps. J. Exp. Theor. Phys. 128, 485–488 (2019). https://doi.org/10.1134/S1063776119020018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119020018

Navigation