Skip to main content
Log in

Universal Phase Diagram and Scaling Functions of Imbalanced Fermi Gases

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We discuss the phase diagram and the universal scaling functions of attractive Fermi gases at finite imbalance. The existence of a quantum multicritical point for the unitary gas at vanishing chemical potential μ and effective magnetic field h, first discussed by Nikolić and Sachdev, gives rise to three different phase diagrams, depending on whether the inverse scattering length 1/a is negative, positive or zero. Within a Luttinger–Ward formalism, the phase diagram and pressure of the unitary gas is calculated as a function of the dimensionless scaling variables T/μ and h/μ. The results indicate that beyond the Clogston–Chandrasekhar limit at (h/μ)c ≃ 1.09, the unitary gas exhibits an inhomogeneous superfluid phase with FFLO order that can reach critical temperatures near unitarity of ≃0.03TF .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. As emphasized by Radzihovsky [11], FFLO is a pair-density wave rather than a genuine supersolid because there is only a single order parameter, not two independent ones.

  2. Note that in many publications, the form factor χ(x) in (2) is replaced by a delta function, which leads to the incorrect result re = –2\({{r}^{ \star }}\) for all Feshbach resonances.

  3. This must be distinguished carefully from the notion of open or closed channel dominated resonances discussed above, which is defined at the level of two-body interactions, independent of the Fermion density.

  4. Dimensional analysis is sufficient to formulate a scaling function for the pressure because it does not develop an anomalous dimension, in contrast to observables like the collisional relaxation rate [35] or the closed channel fraction (8), which involve the additional microscopic lengths \(\bar {a}\) or \({{r}^{ \star }}\).

  5. This happens in mean field calculations, where FFLO disappears in the ground state at a finite negative 1/(kFa)* = –2.86 [40] or 1/(kFa)* = – 0.46 [41].

  6. Strictly speaking, Γ–1(Q, Ωn = 0) ~ |Q|2 – η involves an anomalous dimension η which is, however, very small for the transition to superfluidity in three dimensions and is anyway not properly contained in our approach.

REFERENCES

  1. M. Randeria and E. Taylor, Ann. Rev. Condens. Matter Phys. 5, 209 (2014).

    Article  ADS  Google Scholar 

  2. M. W. Zwierlein, in Novel Superfluids, Ed. by K. H. Bennemann and J. B. Ketterson (Oxford Scientific, Oxford, 2014), Vol. 2, p. 269.

    Google Scholar 

  3. W. Zwerger, in Quantum Matter at Ultralow Temperatures, Proceedings of the 191st Course of International School of Physics Enrico Fermi, Varenna, July 2014, Ed. by M. Inguscio, W. Ketterle, S. Stringari, and G. Roati (IOS, Amsterdam, 2016), p. 63.

  4. Y. Nishida and D. T. Son, Phys. Rev. D 76, 086004 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  5. D. T. Son, Phys. Rev. Lett. 98, 020604 (2007).

    Article  ADS  Google Scholar 

  6. F. Werner and Y. Castin, Phys. Rev. A 74, 053604 (2006).

    Article  ADS  Google Scholar 

  7. L. P. Pitaevskii and A. Rosch, Phys. Rev. A 55, R853 (1997).

    Article  ADS  Google Scholar 

  8. P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).

    Article  ADS  Google Scholar 

  9. F. Chevy and C. Mora, Rep. Prog. Phys. 73, 112401 (2010).

    Article  ADS  Google Scholar 

  10. The BCS–BEC Crossover and the Unitary Fermi Gas, Ed. by W. Zwerger, Lect. Notes Phys. 836, 1 (2012).

  11. L. Radzihovsky, Phys. Rev. A 84, 023611 (2011).

    Article  ADS  Google Scholar 

  12. P. Fulde and R. A. Ferrell, Phys. Rev. A 135, 550 (1964).

    Article  ADS  Google Scholar 

  13. A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1964).

    Google Scholar 

  14. D. T. Son and M. A. Stephanov, Phys. Rev. A 74, 013614 (2006).

    Article  ADS  Google Scholar 

  15. A. Bulgac and M. M. Forbes, Phys. Rev. Lett. 101, 215301 (2008).

    Article  ADS  Google Scholar 

  16. R. Haussmann, W. Rantner, S. Cerrito, and W. Zwerger, Phys. Rev. A 75, 023610 (2007).

    Article  ADS  Google Scholar 

  17. B. Mukherjee, Z. Yan, P. B. Patel, et al., Phys. Rev. Lett. 118, 123401 (2017).

    Article  ADS  Google Scholar 

  18. C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).

    Article  ADS  Google Scholar 

  19. G. F. Gribakin and V. V. Flambaum, Phys. Rev. A 48, 546 (1993).

    Article  ADS  Google Scholar 

  20. R. Schmidt, S. P. Rath, and W. Zwerger, Eur. Phys. J. B 85, 386 (2012).

    Article  ADS  Google Scholar 

  21. K. Goral, T. Kohler, S. A. Gardiner, E. Tiesinga, and P. S. Julienne, J. Phys. B 37, 3457 (2004).

    Article  ADS  Google Scholar 

  22. V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 59, 1998 (1999).

    Article  ADS  Google Scholar 

  23. F. Werner, L. Tarruell, and Y. Castin, Eur. Phys. J. B 68, 401 (2009).

    Article  ADS  Google Scholar 

  24. D. E. Sheehy and L. Radzihovsky, Phys. Rev. Lett. 96, 060401 (2006).

    Article  ADS  Google Scholar 

  25. S. Sachdev, Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, UK, 2011).

    Book  MATH  Google Scholar 

  26. D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev. Lett. 93, 090404 (2004).

    Article  ADS  Google Scholar 

  27. K. Van Houcke, F. Werner, E. Kozik, et al., Nat. Phys. 8, 366 (2012).

    Article  Google Scholar 

  28. M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, Science 335, 563 (2012).

    Article  ADS  Google Scholar 

  29. Y. Nishida and D. T. Son, Lect. Notes Phys. 836, 233 (2012).

  30. Y. Nishida, Phys. Rev. A 79, 013627 (2009).

    Article  ADS  Google Scholar 

  31. G. Zurn, T. Lompe, A. N. Wenz, et al., Phys. Rev. Lett. 110, 135301 (2013).

    Article  ADS  Google Scholar 

  32. T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004).

    Article  ADS  Google Scholar 

  33. A. Bulgac and M. M. Forbes, Phys. Rev. A 75, 031605 (2007).

    Article  ADS  Google Scholar 

  34. F. Chevy, Phys. Rev. A 74, 063628 (2006).

    Article  ADS  Google Scholar 

  35. D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev. A 71, 012708 (2005).

    Article  ADS  Google Scholar 

  36. N. Prokof’ev and B. Svistunov, Phys. Rev. B 77, 020408 (2008).

    Article  ADS  Google Scholar 

  37. G. B. Partridge, W. Li, R. I. Kamar, et al., Science 311, 503 (2006).

    Article  ADS  Google Scholar 

  38. M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Science 311, 492 (2006).

    Article  ADS  Google Scholar 

  39. S. Sachdev and K. Yang, Phys. Rev. B 73, 174504 (2006).

    Article  ADS  Google Scholar 

  40. M. M. Parish, F. M. Marchetti, A. Lamacraft, and B. D. Simons, Nat. Phys. 3, 124 (2007).

    Article  Google Scholar 

  41. D. E. Sheehy and L. Radzihovsky, Ann. Phys. 322, 1790 (2007).

    Article  ADS  Google Scholar 

  42. M. Y. Kagan and A. V. Chubukov, JETP Lett. 50, 483 (1989).

    Google Scholar 

  43. M. A. Baranov, Y. Kagan, and M. Y. Kagan, JETP Lett. 64, 273 (1996).

    Google Scholar 

  44. K. R. Patton and D. E. Sheehy, Phys. Rev. A 83, 051607 (2011).

    Article  ADS  Google Scholar 

  45. S. Nascimbene, N. Navon, S. Pilati, et al., Phys. Rev. Lett. 106, 215303 (2011).

    Article  ADS  Google Scholar 

  46. B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).

    Article  ADS  Google Scholar 

  47. A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).

    Article  ADS  Google Scholar 

  48. L. P. Gor’kov and T. K. Melik-Barkhudarov, Zh. Eskp. Theor. Fiz. 40, 1452 (1961).

    Google Scholar 

  49. T. Enss, Phys. Rev. A 86, 013616 (2012).

    Article  ADS  Google Scholar 

  50. M. Punk, P. T. Dumitrescu, and W. Zwerger, Phys. Rev. A 80, 053605 (2009).

    Article  ADS  Google Scholar 

  51. S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).

    Article  ADS  Google Scholar 

  52. R. Haussmann, M. Punk, and W. Zwerger, Phys. Rev. A 80, 063612 (2009).

    Article  ADS  Google Scholar 

  53. S. Pilati and S. Giorgini, Phys. Rev. Lett. 100, 030401 (2008).

    Article  ADS  Google Scholar 

  54. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975).

    Google Scholar 

  55. J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  56. G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  57. G. V. Haines and A. G. Jones, Geophys. J. 92, 171 (1988).

    Article  ADS  Google Scholar 

  58. C. Lobo, A. Recati, S. Giorgini, and S. Stringari, Phys. Rev. Lett. 97, 200403 (2006).

    Article  ADS  Google Scholar 

  59. I. Boettcher J. Braun, T. K. Herbst, et al., Phys. Rev. A 91, 013610 (2015).

  60. M. Y. Veillette, D. E. Sheehy, and L. Radzihovsky, Phys. Rev. A 75, 043614 (2007).

    Article  ADS  Google Scholar 

  61. Y. Nishida and D. T. Son, Phys. Rev. A 75, 063617 (2007).

    Article  ADS  Google Scholar 

  62. Y. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle, Nature 451, 689 (2008).

    Article  ADS  Google Scholar 

  63. N. Navon, S. Nascimbene, F. Chevy, and C. Salomon, Science 328, 729 (2010).

    Article  ADS  Google Scholar 

  64. R. Haussmann, Phys. Rev. B 49, 12975 (1994).

    Article  ADS  Google Scholar 

  65. S. Tan, Ann. Phys. 12, 2952 (2008).

    Article  ADS  Google Scholar 

  66. S. Tan, Ann. Phys. 12, 2987 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zwerger.

Additional information

Contribution for the JETP special issue in honor of L. P. Pitaevskii’s 85th birthday

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, B., Lang, J. & Zwerger, W. Universal Phase Diagram and Scaling Functions of Imbalanced Fermi Gases. J. Exp. Theor. Phys. 127, 812–825 (2018). https://doi.org/10.1134/S1063776118110031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118110031

Navigation