Skip to main content
Log in

Dark Conductivity and Photoconductivity of Nonaqueous Liposomes: a New Method for Measuring the Phase-Transition Temperatures of Lipid Membranes

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new method is developed to measure the phase-transition temperatures in artificial phospholipid membranes. This method is based on studying the temperature dependence of dark conductivity and photoconductivity in a symmetric cell with current-conducting indium–tin oxide (ITO) electrodes. Internal electron photoemission into a thin liposome layer is induced by visible and near IR light from the ITO electrodes. This method is applied to study the lyotropic phases in 1,2-dipalmitoyl-rac-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) with ethylene glycol (EG) and glycerol (G). The results of time-of-flight measurements are used to calculate the carrier mobilities in liposome vesicles. The measurement results are compared with the results obtained by dc conductometry. We are the first to detect the effect of a positive temperature coefficient of resistivity in a liquid-crystal phase. The proposed method makes it possible to detect the phase transitions in lyotropic liquid-crystal systems and, hence, can be used to create biocompatible drug carriers based on thermosensitive liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Antonella and M. Giancarlo, Peptide Sci. 104, 462 (2015).

    Article  Google Scholar 

  2. J. A. Allen, R. A. Halverson-Tamboli, and M. M. Rasenick, Nat. Publ. Group 8, 128 (2007).

    Google Scholar 

  3. V. F. Antonov, V. V. Petrov, A. A. Molnar, D. A. Predvoditelev, and A. S. Ivanov, Nature (London, U.K.) 283, 585 (1988).

    Article  ADS  Google Scholar 

  4. A. G. Petrov, A. T. Todorov, B. Bonev, L. M. Blinov, S. V. Yablonski, D. B. Subachyus, and N. Tsvetkova, Ferroelectrics 114, 415 (1991).

    Article  Google Scholar 

  5. J. Harden, N. Diorio, A. G. Petrov, and A. Jakli, Phys. Rev. E 79, 011701 (2009).

    Article  ADS  Google Scholar 

  6. S. V. Yablonskii and L. M. Blinov, Sov. Tech. Phys. Lett. 10, 639 (1984).

    Google Scholar 

  7. S. V. Yablonskii and V. V. Bodnarchuk, Zhidk. Krist. Prakt. Ispol’z. 17 (4), 106 (2017).

    Google Scholar 

  8. K. Muldrew, Cryobiology: A Short Course (Univ. Calgary, Canada, 1999).

    Google Scholar 

  9. Yu. V. Pleskov, A. R. Tameev, V. P. Varnin, I. G. Teremetskaya, and A. M. Baranov, Semiconductors 31, 980 (1997).

    Article  ADS  Google Scholar 

  10. S. Ramo, Proc. IRE 27, 584 (1939).

  11. W. Shockley, J. Appl. Phys. 9, 635 (1938).

    Article  ADS  Google Scholar 

  12. I. Adamchevskii, Electrical Conductivity of Liquid Dielectrics (Energiya, Leningrad, 1972) [in Russian].

    Google Scholar 

  13. W. Heywang, Solid State Electron. 3, 51 (1961). doi 10.1016/0038-1101(61)90080-6

    Article  ADS  Google Scholar 

  14. S. V. Yablonskii, V. V. Bodnarchuk, V. V. Grebenev, and A. R. Geivandov, in Proceedings of the 27th International Liquid Crystal Conference ILCC 2018 (in press).

  15. J. P. Dilger, G. McLaughlin, T. J. McIntosh, and S. A. Simon, Science (Washington, DC, U. S.) 206 (4423), 1196 (1979).

    Article  ADS  Google Scholar 

  16. N. Bjerrum, Science (Washington, DC, U. S.) 115, 385 (1952).

    Article  ADS  Google Scholar 

  17. L. M. Blinov, S. A. Davidyan, A. G. Petrov, A. T. Todorov, and S. V. Yablonskii, JETP Lett. 48, 285 (1988).

    ADS  Google Scholar 

  18. S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981; Gordon and Breach, London, 1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Yablonskii.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yablonskii, S.V., Bodnarchuk, V.V. Dark Conductivity and Photoconductivity of Nonaqueous Liposomes: a New Method for Measuring the Phase-Transition Temperatures of Lipid Membranes. J. Exp. Theor. Phys. 127, 791–796 (2018). https://doi.org/10.1134/S1063776118100229

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118100229

Keywords

Navigation